Skip to main content

Climate Changes in Coastal Areas of Patagonia: Observed Trends and Future Projections

Part of the Natural and Social Sciences of Patagonia book series (NSSP)

Abstract

The aim of this chapter is to describe climate characteristics since the Anthropocene inception and to assess expected climate changes in Patagonia, with emphasis on coastal areas. The climate in Patagonia has warmed up since 1950, and this trend is expected to continue in the future. However, the situation is slightly different in coastal areas where temperature trends are weaker and even negative in several locations, while future projections indicate an increase in mean temperature. Although precipitation in coastal areas is scarce and there is a large interannual variability, recent trends indicate a slight decrease, and future projections show wetter conditions in coastal areas north of 44°S and dryer conditions in southern regions. Additionally, precipitation extreme events are expected to increase in the future. Regarding wind intensity, there is a clear negative trend for most of the coastal areas except for the southern tip, and this pattern will continue during the twenty-first century. Trends and projections in the climate of coastal areas could be related with changes in the large-scale circulation variability patterns. The most relevant is associated with the impact of the significant trend toward positive polarity of the Southern Annular Mode during the second half of the twentieth century.

Keywords

  • Southern South America
  • Climate trends
  • Climate projections
  • Large-scale circulation variability

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agosta E, Compagnucci R, Ariztegui D (2015) Precipitation linked to Atlantic moisture transport: clues to interpret patagonian palaeoclimate. Clim Res 62:219–240

    Google Scholar 

  • Agosta E, Martin P, Serio L (2019) Persistent easterly winds leading to precipitation in the Atlantic Coast of Patagonia. Int J Climatol 39:5063–5090

    Google Scholar 

  • Agosta E, Hurtado S, Martin P (2020) “Easterlies”-induced precipitation in eastern Patagonia: seasonal influences of ENSO’S FLAVOURS and SAM. Int J Climatol 40:5464–5484

    Google Scholar 

  • Alvarez MP, Hernández MA, Trovatto MM, González N (2013) Estimación de recarga en zonas áridas según distintos métodos. Área medanosa del sur de Península Valdés. In: González N, Trovatto MM, Laurencena PC, Kruse EE (eds) Agua subterránea recurso estratégico, vol 1. EDULP, La Plata, pp 46–51

    Google Scholar 

  • Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905

    Google Scholar 

  • Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the southern hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38. https://doi.org/10.1029/2010GL045384

  • Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Paul ND, Bornman JF, Bais AF, Sulzberger B, Wilson SR, Andrady AL, McKenzie RL, Neale PJ, Austin AT, Bernhard GH, Solomon KR, Neale RE, Young PJ, Norval M, Rhodes LE, Hylander S, Rose KC, Longstreth J, Aucamp PJ, Ballaré CL, Cory RM, Flint SD, de Gruijl FR, Häder D-P, Heikkilä AM, Jansen MAK, Pandey KK, Robson TM, Sinclair CA, Wängberg S-Å, Worrest RC, Yazar S, Young AR, Zepp RG (2019) Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat Sustain 2:569–579

    Google Scholar 

  • Barrett BS, Carrasco JF, Testino AP (2011) Madden–Julian Oscillation (MJO) modulation of atmospheric circulation and Chilean winter precipitation. J Clim 25:1678–1688

    Google Scholar 

  • Barros V (Ed) (2006) Informe Final Comunicación Nacional de Cambio Climático: Vulnerabilidad de la Patagonia y Sur de las provincias de Buenos Aires y La Pampa. Fundación e Instituto Torcuato Di Tella, Buenos Aires, 368 p

    Google Scholar 

  • Barros V, Vera C (coordinators), Secretaria de Ambiente y Desarrollo Sustentable de la Nación (2014). Tercera Comunicación Nacional sobre Cambio Climático. Cambio Climático en Argentina; Tendencias y Proyecciones (CIMA), Buenos Aires, 341 pag

    Google Scholar 

  • Bell N (1981) Precipitation. In: Goodall D, Perry R (eds) Arid land ecosystems. Cambridge University Press, Cambridge, pp 373–393

    Google Scholar 

  • Beltrán A (1997) Caracterización microclimática del Distrito Occidental de la estepa patagónica, 119p. Magister thesis. Universidad de Buenos Aires

    Google Scholar 

  • Berman AL, Silvestri G, Compagnucci R (2012) Eastern Patagonia seasonal precipitation: influence of southern hemisphere circulation and links with subtropical South American precipitation. J Clim 25:6781–6795

    Google Scholar 

  • Bianchi E, Solarte A, Guozden TM (2017) Large scale climate drivers for wind resource in southern South America. Renew Energy 114:708–715

    Google Scholar 

  • Bilmes A, Pessacg N, Álvarez MP, Brandizi L, Cuitiño JI, Kaminker S, Bouza PJ, Rostagno CM, Núñez de la Rosa D, Canizzaro A (2016) Inundaciones en Puerto Madryn: Relevamiento y diagnóstico del evento del 21 de Enero de 2016. Informe Técnico CCT CONICET-CENPAT, Buenos Aires, 16 pag

    Google Scholar 

  • Blázquez J, Solman SA (2018) Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere. Clim Dyn 50:2705–2717

    Google Scholar 

  • Blázquez J, Solman SA (2019) Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Clim Dyn 52:5849–5860

    Google Scholar 

  • Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent mega drought in Central Chile. Geophys Res Lett 43. https://doi.org/10.1002/2015GL067265

  • Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

    Google Scholar 

  • Cai W, McPhaden MJ, Grimm AM, Rodrigues RR, Taschetto AS, Garreaud RD, Dewitte B, Poveda G, Yoo-Geun H, Santoso NB, Anderson W, Wang G, Geng T, Hyun-Su J, Marengo JA, Alves L, Osman M, Li S, Wu L, Karamperidou C, Takahashi K, Vera C (2020) Climate impacts of the El Niño–Southern Oscillation on South America. Nat Rev Earth Environ 1:215–231

    Google Scholar 

  • Cardona OD, van Aalst MK, Birkmann J, Fordham M, McGregor G, Perez R, Pulwarty RS, ELF S, Sinh BT (2012) Determinants of risk: exposure and vulnerability. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation, A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge/New York, pp 65–108

    Google Scholar 

  • Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21:303–317

    Google Scholar 

  • Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:L10805. https://doi.org/10.1029/2012GL051736

    CrossRef  Google Scholar 

  • Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res 117:D23118. https://doi.org/10.1029/2012JD018578

    CrossRef  Google Scholar 

  • Coronato F (1993) Wind chill factor applied to Patagonian climatology. Int J Biometeorol 37:1–6

    Google Scholar 

  • Coronato F (1995) Windchill influence on thermal conditions in North Patagonia. Int J Biometeorol 39:87–93

    Google Scholar 

  • Coronato F, Pessacg N, Álvarez MP (2017) The climate of Península Valdés within a regional frame. In: Bouza P, Bilmes A (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina, Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-48508-94

  • D’Onofrio EE, Fiore MME, Mediavilla D (2006) Evolución de las sondas de tormenta en Mar de Plata durante el período 1956–2005. Resúmenes VI Jornadas Nacionales de Ciencias del Mar y XVI Coloquio e Oceanografía IAPSO, 4 al 8 de diciembre de 2006. Puerto Madryn, Argentina, Resúmenes 174 pag

    Google Scholar 

  • Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. https://doi.org/10.1038/nclimate1633

  • Damiani A, Cordero RR, Llanillo PJ, Feron S, Boisier JP, Barreaud R, Rondanelli R, Irie H, Watanabe S (2020) Connection between Antarctic ozone and climate: interannual precipitation changes in the Southern Hemisphere. Atmosphere 11:579. https://doi.org/10.3390/atmos11060579

    CrossRef  CAS  Google Scholar 

  • Dätwyler C, Neukom R, Abram NJ, Gallant AJE, Grosjean M, Jacques-Coper M, Karoly DJ, Villalba R (2018) Teleconnection stationarity, variability and trends of the southern annular mode (SAM) during the last millennium. Clim Dyn 51:2321–2339

    Google Scholar 

  • Dellatorre F, Pisoni JP, Barón P, Rivas A (2012) Tide and wind forced nearshore dynamics in Nuevo Gulf (Northern Patagonia, Argentina): potential implications for cross-shore transport. J Mar Syst 96–97:82–89

    Google Scholar 

  • Dhomse SS, Feng W, Montzka SA, Hossaine R, Keeble J, Pyle JA, Daniel JS, Chipperfield MP (2019) Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nat Commun 10:5781. https://doi.org/10.1038/s41467-019-13717-x

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdy AJ, Catto JL (2017) Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci Rep 7:40359. https://doi.org/10.1038/srep40359

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle ME, Barros VR (2002) Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic. J Clim 15:3394–3410

    Google Scholar 

  • Ellis R, Chen SS (2004) Effects of sea breeze and local winds on rainfall in South Florida. 26th conference on hurricanes and tropical meteorology, pp. 504–505

    Google Scholar 

  • Engel A, Rigby M, Burkholder JB, Fernandez RP, Froidevaux L, Hall BD, Hossaini R, Saito T, Vollmer MK, Yao B (2018) Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal protocol. In: Doherty SJ, Means T, Stewart BC, McCarrick BC, Dailey-Fischer D, Reiser AM (eds) Global ozone research and monitoring project, Scientific assessment of ozone depletion: 2018, report no. 58. World Meteorological Organization, Geneva, pp 1.1–1.87

    Google Scholar 

  • England MR, Polvani LM, Smith KL, Landrum L, Holland MM (2016) Robust response of the Amundsen Sea low to stratospheric ozone depletion. Geophys Res Lett 43:8207–8213

    CAS  Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the Southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. https://doi.org/10.1029/2008JD010519

    CrossRef  Google Scholar 

  • Fang X, Pyle JA, Chipperfield MP, Daniel JS, Sunyoung P, Prinn RG (2019) Challenges for the recovery of the ozone layer. Nat Geosci 12:592–596

    CAS  Google Scholar 

  • Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J Clim 19:979–997

    Google Scholar 

  • Fogt RL, Marshall GJ (2020) The southern annular mode: variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim Change. https://doi.org/10.1002/wcc.652

  • Fogt RL, Goergens CA, Jones JM, Schneider DP, Nicolas JP, Bromwich DH, Dusselier HE (2017) A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion. Geophys Res Lett 44:9918–9927

    Google Scholar 

  • Gaitán JJ, Bran D, Oliva G, Maestre F, Aguiar MR, Jobbagy E, Buono G, Ferrante D, Nakamatsu V, Ciari G, Salomone J, Massara V (2014) Plant species richness and shrub cover attenuate drought effects on ecosystem functioning cross Patagonian rangelands. Biol. Lett. 10: 20140673. http://dx.doi.org/10.1098/rsbl.2014.0673

  • Garreaud R (2009) The Andes climate and weather. Adv Geosci 7:1–9

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230

    Google Scholar 

  • Ghil M, Mo KC (1991) Intraseasonal oscillations in the global atmosphere. Part II: Southern Hemisphere. J Atmos Sci 48:780–790

    Google Scholar 

  • Gillett N, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:2730–275. https://doi.org/10.1126/science.1087440

  • Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the southern annular mode. Geophys Res Lett 33. https://doi.org/10.1029/2006GL027721

  • Giorgi F, Gutowski W (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour. https://doi.org/10.1146/annurev-environ-102014-021217

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Giuliani G (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Google Scholar 

  • Golluscio RA, Sala OW, Lauenroth WK (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25

    CAS  PubMed  Google Scholar 

  • Gómez A, Iantanos N, Jones M (2003) Dinámica Costera de la ciudad de Comodoro Rivadavia. Instituto de Geología y Recursos Minerales. SEGEMAR, Buenos Aires, 22 pag

    Google Scholar 

  • Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462

    Google Scholar 

  • González PLM, Polvani LM, Seager R, Correa GJP (2014) Stratospheric ozone depletion: a key driver of recent precipitation trends in south eastern South America. Clim Dyn 42:1775–1792

    Google Scholar 

  • Gramcianinov CB, Hodges KI, Camargo R (2019) The properties and genesis environments of South Atlantic cyclones. Clim Dyn 53:4115–4140

    Google Scholar 

  • Gupta AS, England MH (2006) Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J Clim 19:4457–4486

    Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi K, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, Zhou G (2018) Impacts of 1.5°C Global Warming on Natural and Human Systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Technical Document. World Meteorological Organization, Geneva 562

    Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology, 3d edn. Academic Press, Amsterdam, 542 pag

    Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on Southern Hemisphere storm tracks. J Clim 18:4108–4129

    Google Scholar 

  • IPCC (2012) In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 582 pag

    Google Scholar 

  • IPCC (2014) Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo principal de redacción, R.K. Pachauri y L.A. Meyer (eds.)]. IPCC, Ginebra, Suiza, 157 pag

    Google Scholar 

  • Isla FI, Isla MF (this volume) Geological changes in coastal areas of Patagonia, Argentina and Chile. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmos 3:181–199

    Google Scholar 

  • Jaques-Coper M, Garreaud RD (2014) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179

    Google Scholar 

  • Jobbagy E, Paruelo J, Leon R (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Kaless G, Pascual M, Flaherty S, Liberoff A, García-Asorey M, Brandizi L, Pessacg N (2019) Ecos de la tormenta de Comodoro Rivadavia en el Valle Inferior del Río Chubut. Aporte de sedimentos al Río Chubut desde la cuenca del Río Chico. In: Paredes JM (ed) Comodoro Rivadavia y la catástrofe de 2017. Visiones múltiples para una ciudad en riesgo. Universidad Nacional de la Patagonia San Juan Bosco. Editorial Universitaria de la Patagonia, Comodoro Rivadavia, pp 289–303

    Google Scholar 

  • Karoly DJ (1989) Southern Hemisphere circulation features associated with El Nino–southern oscillation. J Clim 2:1239–1252

    Google Scholar 

  • Kayano MT, Andreoli RV (2007) Relations of South American summer rainfall interannual variations with the Pacific decadal oscillation. Int J Climatol 27:531–540

    Google Scholar 

  • Kidson JW (1988) Interannual variations in the Southern Hemisphere circulation. J Clim 1:1177–1198

    Google Scholar 

  • Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. https://doi.org/10.1029/2012GL052006

    CrossRef  Google Scholar 

  • Lakkis SG, Canziani PO, Rodriguez JO, Yuchechen AE, O’Neill A, Albers KH, Hodges K (2021) Early 21st century cyclone climatology: a 3D perspective. Basic characterization. Int J Clim https://doi.org/10.1002/joc.7056

  • Le Houérou HN (1996) Climate change, drought and desertification. Review. J Arid Environ 34:133–185

    Google Scholar 

  • Lee S, Feldstein SB (2013) Detecting ozone- and greenhouse-gas driven wind trends with observational data. Science 339:563–567

    CAS  PubMed  Google Scholar 

  • Li F, Wang H (2013) Spring surface cooling trend along the East Asian coast after the late 1990s. Chin Sci Bull 58:3847–3851

    Google Scholar 

  • Lim E-P, Hendon HH, Arblaster JM, Delage F, Nguyen H, Min S-K, Wheeler MC (2016) The impact of the southern annular mode on future changes in Southern Hemisphere rainfall. Geophys Res Lett 43:7160–7167

    Google Scholar 

  • Lopes A, Lopes S, Matzarakis A, Alcoforado MJ (2010) Summer sea breeze influence on human comfort in Funchal (Madeira Island)-application to urban climate and tourism planning. 7th Conference on Biometeorology, pp. 352–357

    Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143

    Google Scholar 

  • Marshall GJ, Thompson DW (2016) The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures: Antarctic temperatures. J Geophys Res Atmos 121:3276–3289

    Google Scholar 

  • Massera CB (2019) Tecnología de información geográfica aplicada al riesgo de desastres urbano-ambientales. In: Paredes JM (ed) Comodoro Rivadavia y la catástrofe de 2017. Visiones múltiples para una ciudad en riesgo. Universidad Nacional de la Patagonia San Juan Bosco. Editorial Universitaria de la Patagonia, Comodoro Rivadavia, pp 119–131

    Google Scholar 

  • McLandress C, Shepherd TG, Scinocca JF, Plummer DA, Sigmond M, Jonsson AI, Reader MC (2011) Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J Clim 24:1850–1868

    Google Scholar 

  • Minetti JL, Vargas WM, Poblete AG, Bobba ME (2010) Regional drought in the southern of South America – physical aspects. Rev Bras Meteorol 25:88–102

    Google Scholar 

  • Mo KC, Higgins RW (1998) The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon Weather Rev 126:1581–1596

    Google Scholar 

  • Mo KC, Paegle J (2001) The Pacific–South American modes and their downstream effects. Int J Climatol 21:1211–1229

    Google Scholar 

  • Morgenstern O (2021) The southern annular mode in 6th coupled model intercomparison project models. J Geophys Res Atmos e2020JD034161. https://doi.org/10.1029/2020JD034161

  • Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont DJ, Phillips AS, Scott JD, Smith CA (2016) The Pacific decadal oscillation, revisited. J Clim 29:4399–4427

    Google Scholar 

  • Nicholls R, Wong PP, Burkett VR, Codignotto JO, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp. 315–356

    Google Scholar 

  • Olcina Cantos J, Azorín Molina C (2004) The meteorological importance of sea-breezes in the Levant region of Spain. Weather 59:282–286

    Google Scholar 

  • Olmo M, Bettolli ML, Rusticucci M (2020) Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: spatial variability and trends over southern South America. Weather Clim Extremes 29:100267. https://doi.org/10.1016/j.wace.2020.100267

    CrossRef  Google Scholar 

  • Orte PF, Luccini E, Wolfram E, Nollas F, Pallotta J, D’Elia R, Carbajal G, Mbatha N, Hlongwane N (2020) Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina. Rev Teledetección Asociación Española de Teledetección. https://doi.org/10.4995/raet.2020.13673

  • Paredes JM, Ocampo SM, Foix N, Olazábal SX, Valle MN, Allard JO (2020) Precipitaciones extremas e inundaciones repentinas en ambiente semiárido: impactos del evento de marzo-abril de 2017 en Comodoro Rivadavia, Chubut, Argentina. Rev Asoc Geol Argent 77:296–318

    Google Scholar 

  • Penalba OC, Rivera JA (2013) Future changes in drought characteristics over southern South America projected by a CMIP5 ensemble. Am J Clim Change 2:173–182

    Google Scholar 

  • Penalba OC, Rivera JA (2016) Regional aspects of future precipitation and meteorological drought characteristics over southern South America projected by a CMIP5 multi-model ensemble. Int J Climatol 36:974–986

    Google Scholar 

  • Peri PL, Lencinas MV, Martínez Pastur G, Wardell-Johnson GW, Lasagno R (2013) Diversity patterns in the steppe of Argentinean southern Patagonia: environmental drivers and impact of grazing. In: Morales Prieto MB, Traba Diaz J (eds). Steppe ecosystems. Nova Science Publishers, New York, pp. 73–95

    Google Scholar 

  • Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714. https://doi.org/10.1029/2008GL033317

    CrossRef  Google Scholar 

  • Perry SJ, McGregor S, Gupta AS, England MH, Maher N (2020) Projected late 21st century changes to the regional impacts of the El Niño-Southern Oscillation. Clim Dyn 54:395–412

    Google Scholar 

  • Pessacg N, Flaherty S, Solman S, Pascual M (2020) Climate change in northern Patagonia: critical decrease in water resources. J Theor Appl Climatol 140:807–822

    Google Scholar 

  • Polvani LM, Waugh DW, Correa GJP, Son S-W (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812

    Google Scholar 

  • Previdi M, Polvani LM (2014) Climate system response to stratospheric ozone depletion and recovery. Q J R Meteorol Soc 140:2401–2419

    Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay and Uruguay. Climates of central and South America. In: Schwerdtfeger W (ed) World survey of climatology, vol 12. Elsevier, Amsterdam, pp 13–72

    Google Scholar 

  • Pyle J, Shepherd T, Bodeker G, Canziani P, Dameris M, Forster P, Gruzdev A, Müller R, Muthama NJ, Pitari G, Randel W (2005) Ozone and climate: a review of interconnections. In: Metz B, Kuijpers L, Solomon S, Andersen SO, Davidson O, Pons J, de Jager D, Kestin T, Manning M, Meyer L (eds) Safeguarding the ozone layer and the global climate system. Cambridge University Press, Cambridge, MA, pp 83–132

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafai P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57

    CAS  Google Scholar 

  • Rivera JA, Penalba OC (2014) Trends and spatial patterns of drought affected area in southern South America. Climate 2:264–278

    Google Scholar 

  • Rivera JA, Araneo DC, Penalba OC, Villalba R (2018) Regional aspects of streamflow droughts in the Andean rivers of Patagonia, Argentina. Links with large-scale climatic oscillations. Hydrol Res 49:134–149

    Google Scholar 

  • Robledo F (2012) Extremos diarios de precipitación en la Argentina: cambios observados en la segunda mitad del siglo XX y asociación con la temperatura superficial del océano tropical. 174 pag. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Doctoral Thesis. digital.bl.fcen.uba.ar

    Google Scholar 

  • Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in southern South America. Int J Climatol 17:67–85

    Google Scholar 

  • Rusticucci M, Barrucand M (2002) Climatología de temperaturas extremas en la Argentina. Consistencia de datos Relación entre la temperatura media estacional y la ocurrencia de días extremos. Meteorológica 26:65–79

    Google Scholar 

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes in Argentina. J Clim 17:4099–4107

    Google Scholar 

  • Saraceno M, Martín J, Moreira D, Pisoni JP, Tonini MH (this volume) Physical changes in the Patagonian shelf. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Saurral RI, Camilloni IA, Barros VR (2017) Low-frequency variability and trends in centennial precipitation stations in southern South America. Int J Climatol 37:1774–1793

    Google Scholar 

  • Schnack E, Pousa J, Bértola G, Isla F (2010) Argentina. In: ECF B (ed) Encyclopedia of the world’s coastal landforms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8639-7_34

    CrossRef  Google Scholar 

  • Scian B (1976) La Brisa de Mar durante el verano 1975/7. Documento Técnico. 16 pag. Comisión Nacional de Estudios Geo-Heliofísicos. Centro Nacional Patagónico, Buenos Aires

    Google Scholar 

  • Sierra JP, Casas-Prat M (2014) Analysis of potential impacts on coastal areas due to changes in wave conditions. Clim Chang 124:861–876

    Google Scholar 

  • Simpkins GR, Karpechko AY (2012) Sensitivity of the southern annular mode to greenhouse gas emission scenarios. Clim Dyn 38:563–572

    Google Scholar 

  • Solman SA, Orlanski I (2014) Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J Atmos Sci 71:539–552

    Google Scholar 

  • Solman SA, Orlanski I (2016) Climate change over the extratropical Southern Hemisphere: the tale from an ensemble of reanalysis datasets. J Clim 29:1673–1687

    Google Scholar 

  • Solomon S, Ivy DJ, Kinnison D, Mills MJ, Neely RR, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science 353:269–274

    CAS  PubMed  Google Scholar 

  • Son S-W, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E,Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science 320:1486–1489. https://doi.org/10.1126/science.1155939

  • Son S-W, Han R, Garfinkel CI, Kim S-Y, Park R, Abraham NL, Zeng G (2018) Tropospheric jet response to Antarctic ozone depletion: an update with Chemistry-Climate Model Initiative (CCMI) models. Environ Res Lett 13:054024. https://doi.org/10.1088/1748-9326/aabf21

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V (2013) Midgley PM (eds). IPCC. Climate change (2013) the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pag

    Google Scholar 

  • Takebayashi H (2020) Priority introduction place “hot spot” of adaptation measures. In: Takebayashi H, Moriyama M (eds) Adaptation measures for urban heat islands. Academic Press, London, pp 39–75

    Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899

    CAS  PubMed  Google Scholar 

  • Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: Trends. J Clim 13:1018–1036

    Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Google Scholar 

  • Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749

    CAS  Google Scholar 

  • Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Chang 59:177–232

    Google Scholar 

  • Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the southern annular mode. Nat Geosci 5:793–798

    CAS  Google Scholar 

  • Vincent L, Peterson T, Barros V (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18:5011–5023

    Google Scholar 

  • Voigt Beier E, Fernandes F, Poleto C (2016) Desertification increased in Argentinian Patagonia: anthropogenic interferences. Acta Sci Hum Soc Sci Mar 38:65–71

    Google Scholar 

  • Wang XL, Swail VR, Zwiers FW (2006) Climatology and changes of extratropical cyclone activity: comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J Clim 19:3145–3166

    Google Scholar 

  • WMO (World Meteorological Organization) (2014) Scientific assessment of ozone depletion (2014) global ozone research and monitoring project report. World Meteorological Organization, Geneva, 416 pag

    Google Scholar 

  • WMO (World Meteorological Organization) (2018) Scientific assessment of ozone depletion: 2018, global ozone research and monitoring project-report no. 58. World Meteorological Organization, Geneva, 590 pag

    Google Scholar 

  • Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A, KL MI, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 361–409

    Google Scholar 

  • Wu Y, Polvani L (2017) Recent trends in extreme precipitation and temperature over southeastern South America: the dominant role of stratospheric ozone depletion in the CESM large ensemble. J Clim 30:6433–6441

    Google Scholar 

  • Yang S, Li Z, Yu J-Y, Hu X, He S (2018) El Niño–southern oscillation and its impact in the changing climate. Nat Sci Rev 5:840–857

    Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. https://doi.org/10.1029/2005GL023684

    CrossRef  CAS  Google Scholar 

  • Zheng F, Li J, Clark RT, Nnamchi HC (2014) Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J Clim 26:9860–9879

    Google Scholar 

Download references

Acknowledgments

This research was funded by FONCYT Grants PICT 2018–03538 and by the Network for the Conservation of Patagonian River Ecosystems (CONICET and The Nature Conservancy) (Resolution 3213/2). This research is also framed within the P-UE CONICET No. 22,920,160,100,044. Thanks go to the CORDEX Project and partner institutions for making climate data available. Thanks to the National Meteorological Service of Argentina for providing meteorological data from weather stations. We thank Dra. Silvia Flaherty, Universidad Nacional de la Patagonia San Juan Bosco, for her writing assistance and kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Pessacg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pessacg, N., Blázquez, J., Lancelotti, J., Solman, S. (2022). Climate Changes in Coastal Areas of Patagonia: Observed Trends and Future Projections. In: Helbling, E.W., Narvarte, M.A., González, R.A., Villafañe, V.E. (eds) Global Change in Atlantic Coastal Patagonian Ecosystems. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-030-86676-1_2

Download citation