Skip to main content

Long-Term Ecology Studies in Patagonian Seabirds: A Review with the Imperial Cormorant as a Case Study

  • Chapter
  • First Online:
Global Change in Atlantic Coastal Patagonian Ecosystems

Abstract

Natural and human-induced environmental changes are worldwide and recurrent threats to seabirds. It is clear that global change and climate variability influence seabird reproduction, distribution, phenology, and survival in many regions of the globe, both on large and local scales. Indeed, seabirds are widely recognized as reliable indicators of marine environmental changes associated with climatic as well as other anthropogenic and natural factors. Long-term monitoring of seabirds, both at the breeding sites and at sea, is key to understand population drivers over time. In the present work, we listed and summarized the long-term ecological studies of seabirds along coastal Patagonia Argentina, and we offer unprecedented results from a long-term dataset (i.e., 16-year period) on demographic, breeding, and at-sea ecological variables for the imperial cormorant (Leucocarbo atriceps), as an example of the type of long-term ecological research needed on the Patagonian coast to understand the potential effects of global change on Patagonian seabirds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. Proc Natl Acad Sci U S A 103:6248–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BirdLife International (2020) Species factsheet: Spheniscus magellanicus. Downloaded from http://www.birdlife.org on 05/10/2020

  • Boersma PD, Rebstock GA (2009) Foraging distance affects reproductive success in Magellanic penguins. Mar Ecol Prog Ser 375:263–275

    Article  Google Scholar 

  • Boersma PD, Rebstock GA (2014) Climate change increases reproductive failure in Magellanic penguins. Plos One 9:e85602

    Article  PubMed  PubMed Central  Google Scholar 

  • Boersma PD, Stokes DL, Yorio PM (1990) Reproductive variability and historical change of Magellanic penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. pp. 15-43 In: Davis LS, Darby JT (Eds) Penguin biology Academic Press, San Diego

    Google Scholar 

  • Boersma PD, Rebstock GA, García-Borboroglu P (2015) Marine protection is needed for Magellanic penguins in Argentina based on long-term data. Biol Conserv 182:197–204

    Article  Google Scholar 

  • Bost CA, Cotté C, Terray P, Barbraud C, Bon C, Delord K, Weimerskirch H (2015) Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat Commun 6:1–9

    Article  Google Scholar 

  • Buratti CC (2008) Distribución y abundancia de anchoíta (Engraulis anchoita) durante una campaña de evaluación de merluza realizada en enero-febrero de 2008 entre 43°30’ y 47°30’ S. INIDEP Inf Tec Int No 65:18 pp

    Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Chambers LE, Dann P, Cannell B, Woehler EJ (2014) Climate as a driver of phenological change in southern seabirds. Int J Biometeorol 58:603–612

    Article  PubMed  Google Scholar 

  • Cheung WW, Sarmiento JL, Dunne J, Frölicher TL, Lam VW, Palomares MD, Pauly D (2013) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat Clim Change 3:54–258

    Article  Google Scholar 

  • Cook TR, Lescroël A, Cherel Y, Kato A, Bost CA (2013) Can foraging ecology drive the evolution of body size in a diving endotherm? PLoS One 8:e56297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corman AM, Mendel B, Voigt CC, Garthe S (2016) Varying foraging patterns in response to competition? A multicolony approach in a generalist seabird. Ecol Evol 6:974–986

    Article  PubMed  PubMed Central  Google Scholar 

  • Croxall JP, Butchart SHM, Lascelles B, Stattersfield AJ, Sullivan B, Symes A, Taylor P (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34

    Article  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre-Teichmann A, Quinones R, Shannon LJ, Verheye HM (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J Mar Sci 57:603–618

    Article  Google Scholar 

  • Dawson A (2008) Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos Trans R Soc B 363:1621–1633

    Article  Google Scholar 

  • Dehnhard N, Ludynia K, Masello JF, Voigt CC, McGill RA, Quillfeldt P (2016) Plasticity in foraging behaviour and diet buffers effects of inter-annual environmental differences on chick growth and survival in southern Rockhopper penguins Eudyptes chrysocome chrysocome. Polar Biol 39:1627–1641

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ, Van Oers K, Van Noordwijk AJ (2002) Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim Behav 64:929–938

    Article  Google Scholar 

  • Durant JM, Hjermann DO, Frederiksen M, Charrassin JB, Le Maho Y, Sabarros PS, Crawford RJM, Chr. Stenseth N (2009) Pros and cons of using seabirds as ecological indicators. Climate Res 39:115−129

    Google Scholar 

  • Elliott KH, Woo KJ, Benvenuti S (2009) Do activity costs determine foraging tactics for an arctic seabird? Mar Biol 156:1809–1816

    Article  Google Scholar 

  • Favero M, Silva Rodríguez MP (2005) Estado actual y conservación de aves pelágicas que utilizan la plataforma continental argentina como área de alimentación. Hornero 20:95–110

    Google Scholar 

  • Favero M, Blanco G, Copello S, Pon JPS, Patterlini C, Mariano-Jelicich R, Berón MP (2013) Seabird bycatch in the Argentinian demersal longline fishery, 2001−2010. Endanger Species Res 19:187–199

    Article  Google Scholar 

  • Fort J, Beaugrand G, Grémillet D, Phillips RA (2012) Biologging, remotely-sensed oceanography and the continuous plankton recorder reveal the environmental determinants of a seabird wintering hotspot. PLoS One 7:e41194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen M, Edwards M, Richardson AJ, Halliday NC, Wanless S (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. J Anim Ecol 75:1259–1268

    Article  PubMed  Google Scholar 

  • Frederiksen M, Daunt F, Harris MP, Wanless S (2008) The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. J Anim Ecol 77:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Frere E, Quintana FR, Gandini PA (2005) Cormoranes de la costa patagónica: estado poblacional, ecología y conservación. Hornero 20:35–52

    Google Scholar 

  • Furness RW, Tasker ML (2000) Seabird-fishery interactions: quantifying the sensitivity of seabirds to reductions in sandeel abundance, and identification of key areas for sensitive seabirds in the North Sea. Mar Ecol Prog Ser 202:253–264

    Article  Google Scholar 

  • Gandini P, Millones A, Morgenthaler A, Frere E (2017) Population trends of the Southern Rockhopper Penguin (Eudyptes chrysocome chrysocome) at the northern limit of its breeding range: Isla Pingüino, Santa Cruz, Argentina. Polar Biol 40:1023–1028

    Article  Google Scholar 

  • Gómez-Laich A, Quintana F, Shepard ELC, Wilson RP (2012) Intersexual differences in the diving behaviour of Imperial cormorants. J Ornithol 153:139–147

    Article  Google Scholar 

  • Gómez-Laich A, Wilson RP, Shepard EL, Quintana F (2013) Energy expenditure and food consumption of foraging Imperial cormorants in Patagonia, Argentina. Mar Biol 160:1697–1707

    Article  Google Scholar 

  • Gonzáles-Solís J, Croxall J, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation. Oikos 90:390–398

    Article  Google Scholar 

  • Grémillet D, Pichegru L, Siorat F, Georges JY (2006) Conservation implications of the apparent mismatch between population dynamics and foraging effort in French northern gannets from the English Channel. Mar Ecol Prog Ser 319:15–25

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Hamer KC, Humphreys EM, Garthe S, Hennicke J, Peters G, Grémillet D, Wanless S (2007) Annual variation in diets, feeding locations and foraging behaviour of gannets in the North Sea: flexibility, consistency and constraint. Mar Ecol Prog Ser 338:295–305

    Article  Google Scholar 

  • Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Harris S, Raya Rey A, Zavalaga C, Quintana F (2014) Strong temporal consistency in the individual foraging behaviour of Imperial shags Phalacrocorax atriceps. Ibis 156:523–533

    Article  Google Scholar 

  • Harris S, Quintana F, Ciancio J, Riccialdelli L, Raya Rey A (2016) Linking foraging behavior and diet in a diving seabird. Mar Ecol 37:419–432

    Article  Google Scholar 

  • Hays G, Richardson A, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Inchausti P, Guinet C, Koudil M, Durbec JP, Barbraud C, Weimerskirch H, Jouventin P (2003) Inter-annual variability in the breeding performance of seabirds in relation to oceanographic anomalies that affect the Crozet and the Kerguelen sectors of the Southern Ocean. J Avian Biol 34:170–176

    Article  Google Scholar 

  • IUCN (2020) The IUCN red list of threatened species. Version 2020-2. https://www.iucnredlist.org.

  • Jenouvrier S, Desprez M, Fay R, Barbraud C, Weimerskirch H, Delord K, Caswell H (2018) Climate change and functional traits affect population dynamics of a long-lived seabird. J Anim Ecol 87:906–920

    Article  PubMed  Google Scholar 

  • Keogan K, Daunt F, Wanless S, Phillips RA, Walling CA, Agnew P, Lewis S (2018) Global phenological insensitivity to shifting ocean temperatures among seabirds. Nat Clim Change 8:313–318

    Article  Google Scholar 

  • Kitaysky AS, Golubova EG (2000) Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J Anim Ecol 69:248–262

    Article  Google Scholar 

  • Lewis S, Gremillet D, Daunt F, Ryan PG, Crawford RJ, Wanless S (2006) Using behavioural and state variables to identify proximate causes of population change in a seabird. Oecologia 147:606–614

    Article  PubMed  Google Scholar 

  • Lewison R, Oro D, Godley BJ, Underhill L, Bearhop S, Wilson RP, Boulinier T (2012) Research priorities for seabirds: improving conservation and management in the 21st century. Endanger Species Res 17:93–121

    Article  Google Scholar 

  • Lisnizer N, Garcia-Borboroglu P, Yorio P (2011) Spatial and temporal variation in population trends of kelp gulls in northern Patagonia, Argentina. Emu 111:259–267

    Article  Google Scholar 

  • Malacalza VE, Poretti TI, Bertellotti N (1994) La dieta de Phalacrocorax albiventer en Punta León (Chubut, Argentina) durante la temporada reproductiva. Ornitol Neotrop 5:91–97

    Google Scholar 

  • Miller AK, Karnovsky NJ, Trivelpiece WZ (2009) Flexible foraging strategies of gentoo penguins Pygoscelis papua over five years in the South Shetland Islands, Antarctica. Mar Biol 156:2527–2537

    Article  Google Scholar 

  • Millones A, Gandini P, Frere E (2015) Long-term population trends of the red-legged cormorant Phalacrocorax gaimardi on the Argentine coast. Bird Conser Int 25:234–241

    Article  Google Scholar 

  • Ministerio de Ambiente y Desarrollo Sustentable y Aves Argentina (2017) Categorización de las aves de la Argentina (2015). Informe del Ministerio de Ambiente y Desarrollo Sustentable de la Nación y de Aves Argentinas, edición electrónica. C. A. Buenos Aires, Argentina. 148 pp

    Google Scholar 

  • Patrick SC, Bearhop S, Grémillet D, Lescroël A, Grecian WJ, Bodey TW, Hamer KC, Wakefield E, Le Nuz M, Votier SC (2013) Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos 123:33–40

    Article  Google Scholar 

  • Pessacg N, Blázquez J, Lancelotti J, Solman S (this volume) Climate changes in coastal areas of Patagonia: observed trends and future projections. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrow MT, Duarte CM, Halpern BS, Holding J, Kappel CV, Connor MIO, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change 3:919–925

    Article  Google Scholar 

  • Pozzi LM, Borboroglu PG, Boersma PD, Pascual MA (2015) Population regulation in Magellanic penguins: what determines changes in colony size? PLoS One 10:e0119002

    Article  PubMed  PubMed Central  Google Scholar 

  • Przybylo R, Sheldon BC, Merilä J (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69:395–403

    Article  Google Scholar 

  • Quillfeldt P, Strange IJ, Masello JF (2007) Sea surface temperatures and behavioural buffering capacity in thin-billed prions Pachyptila belcheri: breeding success, provisioning and chick begging. J Avian Biol 38:298–308

    Article  Google Scholar 

  • Quillfeldt P, Schroff S, van Noordwijk HJ, Michalik A, Ludynia K, Masello JF (2011) Flexible foraging behaviour of a sexually dimorphic seabird: large males do not always dive deep. Mar Ecol Prog Ser 428:271–287

    Article  Google Scholar 

  • Quintana F, Punta G, Copello S, Yorio P (2006) Population status and trends of southern giant petrels (Macronectes giganteus) breeding in North Patagonia, Argentina. Polar Biol 30:53–59

    Article  Google Scholar 

  • Quintana F, Wilson R, Dell’Arciprete P, Shepard E, Laich AG (2011) Women from Venus, men from Mars: inter-sex foraging differences in the imperial cormorant Phalacrocorax atriceps a colonial seabird. Oikos 120:350–358

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

    Google Scholar 

  • Raya Rey A, Rosciano N, Liljesthröm M, Samaniego RS, Schiavini A (2014) Species-specific population trends detected for penguins, gulls and cormorants over 20 years in sub-Antarctic Fuegian Archipelago. Polar Biol 37:1343–1360

    Article  Google Scholar 

  • Rebstock GA, Boersma PD, García-Borboroglu P (2016) Changes in habitat use and nesting density in a declining seabird colony. Popul Ecol 58:105–119

    Article  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  • Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the northeast Atlantic. Science 305:1609–1612

    Article  CAS  PubMed  Google Scholar 

  • Rivas AL, Pisoni JP (2010) Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinian continental shelf. J Mar Syst 79:134–143

    Article  Google Scholar 

  • Sala JE, Wilson RP, Quintana F (2012) How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies. PLoS One 7:e51487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala JE, Wilson RP, Frere E, Quintana F (2014) Flexible foraging for finding fish: variable diving patterns in Magellanic penguins from different colonies. J Ornith 155:801–817

    Article  Google Scholar 

  • Sala JE, Pisoni JP, Quintana F (2017) Three-dimensional temperature fields of the North Patagonian sea recorded by Magellanic penguins as biological sampling platforms. Estuar Coast Shelf S 189:203–215

    Article  Google Scholar 

  • Saraceno M, Martín J, Moreira D, Pisoni JP, Tonini MH (this volume) Physical changes in the Patagonian shelf. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Schiavini ACM, Yorio PM, Gandini PA, Raya Rey AN, Boersma PD (2005) Los pingüinos de las costas argentinas: estado poblacional y conservación. Hornero 20:5–23

    Google Scholar 

  • Schreiber EA, Burger J (2002) Climate and weather effects on seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Shepard EL, Wilson RP, Quintana F, Gomez Laich A, Forman DW (2009) Pushed for time or saving on fuel: fine-scale energy budgets shed light on currencies in a diving bird. Proc Roy Soc B- Biol Sci 276:3149–3155

    Google Scholar 

  • Sidhu LA, Dann P, Chambers L, Catchpole EA (2012) Seasonal ocean temperature and the survival of first-year little penguins Eudyptula minor in south-eastern Australia. Mar Ecol Prog Ser 454:263–272

    Article  Google Scholar 

  • Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: An overview. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging: Behavior and Ecology. University of Chicago Press, Chicago, USA, pp 1–28

    Chapter  Google Scholar 

  • Stokes DL, Boersma PD (1998) Nest-site characteristics and reproductive success in Magellanic penguins (Spheniscus magellanicus). The Auk 115:34–49

    Google Scholar 

  • Stokes DL, Boersma PD (2000) Nesting density and reproductive success in a colonial seabird, the Magellanic penguin. Ecology 81:2878–2891

    Article  Google Scholar 

  • Svagelj WS, Quintana F (2007) Sexual size dimorphism and sex determination by morphometric measurements in breeding imperial shags (Phalacrocorax atriceps). Waterbirds 30:97–102

    Article  Google Scholar 

  • Svagelj WS, Quintana F (2011) Breeding performance of the Imperial shag (Phalacrocorax atriceps) in relation to year, laying date and nest location. Emu 111:162–165

    Article  Google Scholar 

  • Sydeman WJ, Tompson SA, Kitaysky A (2012) Seabirds and climate change: roadmap for the future. Mar Ecol Prog Ser 454:107–117

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Clutton-Brock TIM (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16:3304–3313

    Article  Google Scholar 

  • Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Mackay EB (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–245

    Article  CAS  PubMed  Google Scholar 

  • Thaxter CB, Lascelles B, Sugar K, Cook AS, Roos S, Bolton M, Langston RH, Burton NH (2012) Seabird foraging ranges as a preliminary tool for identifying candidate marine protected areas. Biol Conserv 156:53–61

    Article  Google Scholar 

  • Velarde E, Anderson DW, Ezcurra E (2019) Seabird clues to ecosystem health. Science 365:116–117

    Article  CAS  PubMed  Google Scholar 

  • Visser ME, Both C, Lambrechts MM (2004) Global climate change leads to mistimed avian reproduction. Adv Ecol Res 35:89–110

    Article  Google Scholar 

  • Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Warwick Evans V, Atkinson PW, Arnould JPY, Gauvain R, Soanes L, Robinson LA, Green JA (2016) Changes in behaviour drive inter-annual variability in the at-sea distribution of northern gannets. Mar Biol 163:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe YY, Takahashi A, Sato K, Viviant M, Bost CA (2011) Poor flight performance in deep-diving cormorants. J Exp Biol 214:412–421

    Article  PubMed  Google Scholar 

  • Wilson RP, Pütz K, Peters G, Culik B, Scolaro JA, Charrassin JB, Ropert-Coudert Y (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildlife Soc B 25:101–106

    Google Scholar 

  • Wilson RP, Scolaro JA, Grémillet D, Kierspel MA, Laurenti S, Upton J, Straten MT (2005) How do Magellanic Penguins cope with variability in their access to prey? Ecol Monog 75:379–401

    Article  Google Scholar 

  • Wilson RP, Quintana F, Hobson VJ (2012) Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proc R Soc B - Biol Sci:975–980

    Google Scholar 

  • Wilson RP, Sala JE, Gómez-Laich A, Ciancio J, Quintana F (2015) Pushed to the limit: food abundance determines tag-induced harm in penguins. Anim Welf 24:37–44

    Article  Google Scholar 

  • Yorio P (2000) Breeding seabirds of Argentina: conservation tools for a more integrated and regional approach. Emu 100:367–375

    Article  Google Scholar 

  • Yorio P, Frere E, Gandini P, Conway W (1999) Status and conservation of seabirds breeding in Argentina. Bird Conserv Int 9:299–314

    Article  Google Scholar 

  • Yorio P, Pozzi L, Herrera G, Punta G, Svagelj WS, Quintana F (2020) Population trends of Imperial cormorants (Leucocarbo atriceps) in northern coastal Argentine Patagonia over 26 years. Emu 120:114–122

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the Wildlife Conservation Society to F. Quintana, from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2004-20343 and PICT 2013-1229) to F. Quintana and A. Gómez-Laich, and from the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (PIP 5387-2013 and PIP 0268-2014) to F. Quintana, W. Svagelj, and A. Gómez-Laich. We would like to thank the Ministerio de Turismo y Áreas Protegidas and Dirección de Fauna y Flora Silvestre de la Provincia de Chubut for the permits to work in León point and the CCT CENPAT-CONICET for institutional and logistical support. We would also like to express our gratitude to Gabriela Blanco, Giacomo Dell´Omo, Emily Shepard, Marcela Uhart, Soledad Leornadi, Sabrina Harris, Monserrat Del Caño, Carolina Pantano, Carlos Zavalaga, Andrea Benvenuti, María Cruz Sueiro, Verónica Borrell, Laura Silva, Paula Giudici, Luciana Gallo, Richard Gunner, and many others and students and professional who voluntarily help during fieldwork along the last 16 years. Finally, we thank all members of Estancia El Pedral, particularly to Miguel and Chola for such a great hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Quintana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quintana, F., Wilson, R., Prandoni, N., Svagelj, W.S., Gómez-Laich, A. (2022). Long-Term Ecology Studies in Patagonian Seabirds: A Review with the Imperial Cormorant as a Case Study. In: Helbling, E.W., Narvarte, M.A., González, R.A., Villafañe, V.E. (eds) Global Change in Atlantic Coastal Patagonian Ecosystems. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-030-86676-1_10

Download citation

Publish with us

Policies and ethics