Skip to main content

Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In this work, we will make an energetic and structural characterization of three-dimensional linear chains generated from a simple self-avoiding random walk process in a finite time, without boundary conditions, without the need to explore all possible configurations. From the analysis of the energy balance between the terms of interaction and bending (or correlation), it is shown that the chains, during their growth process, initially tend to form clusters, leading to an increase in their interaction and bending energies. Larger chains tend to “escape” from the cluster when they reach a number of “steps” \(N>\sim 1040\), resulting in a decrease in their interaction energy, however, maintaining the same behavior as flexion energy or correlation. This behavior of the bending term in the energy allows distinguishing chains with the same interaction energy that present different structures. As a complement to the energy analysis, we carry out a study based on the moments of inertia of the chains and their radius of gyration. The results show that the formation of clusters separated by “tails” leads to a final “prolate” structure for this type of chain, the same structure evident in real polymeric linear chains in a good solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  2. Flory, P.J.: The configuration of real polymer chains. J. Chem. Phys. 17(3), 303–310 (1949)

    Article  Google Scholar 

  3. Madras, N., Sokal, A.: The pivot algorithm: a highly efficient Monte Carlo method for self-avoiding walk. J. Stat. Phys. 50(1–2), 109–186 (1988)

    Article  MathSciNet  Google Scholar 

  4. Slade, G.: Self-avoiding walks. Math. Intell. 16(1), 29–35 (1994). https://doi.org/10.1007/BF03026612

    Article  MathSciNet  MATH  Google Scholar 

  5. Figueirêdo, P.H., Moret, M.A., Coutinho, S., Nogueira, J.: The role of stochasticity on compactness of the native state of protein peptide backbone. J. Chem. Phys. 133, 08512 (2010)

    Article  Google Scholar 

  6. Boglia, R.A., Tiana, G., Provasi, D.: Simple models of the protein folding and of non-conventional drug design. J. Phys. Condens. Matter 16(6), 111 (2004)

    Article  Google Scholar 

  7. Tang, C.: Simple models of the protein folding problem. Phys. A Stat. Mech. Appl. 288(1), 31–48 (2000)

    Article  Google Scholar 

  8. Grosberg, A.Y., Khokhlov, A.R.: Statistical Physics of Macromolecules. AIP Press, New York (1994)

    Google Scholar 

  9. Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)

    Google Scholar 

  10. Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002)

    Book  Google Scholar 

  11. Hsu, H.P., Paul, W., Binder, K.: Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymers. Macromolecules 43(6), 3094–3102 (2010)

    Article  Google Scholar 

  12. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Elsevier Sciences, New York (1986)

    MATH  Google Scholar 

  13. Schöbl, S., Sturm, S., Janke, W., Kroy, K.: Persistence-length renormalization of polymers in a crowded environment of hard disks. Phys. Rev. Lett. 113(23), 238302 (2014)

    Article  Google Scholar 

  14. Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983)

    Article  MathSciNet  Google Scholar 

  15. Solc, K.: Shape of random-flight chain. J. Chem. Phys. 55(1), 335–344 (1971)

    Article  Google Scholar 

  16. Rudnick, J., Gaspari, G.: The asphericity of random walks. J. Phys. A: Math. Gen. 30(11), 3867–3882 (1997)

    Article  Google Scholar 

  17. Hadizadeh, S., Linhananta, A., Plotkin, S.S.: Improved measures for the shape of a disordered polymer to test a mean-field theory of collapse. Macromolecules 44(15), 6182–6197 (2011)

    Article  Google Scholar 

  18. Aronovitz, J., Nelson, D.: Universal features of polymer shapes. J. Phys. 47(9), 1445–1456 (1986)

    Article  MathSciNet  Google Scholar 

  19. Cannon, J.W., Aronovitz, J.A., Goldbart, P.: Equilibrium distribution of shapes for linear and star macromolecules. J. Phys. I Fr. 1(5), 629–645 (1991)

    Article  Google Scholar 

  20. Alim, K., Frey, E.: Shapes of semi-flexible polymer rings. Phys. Rev. Lett. 99(19), 198102 (2007)

    Article  Google Scholar 

  21. Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., Shakhnovich, E.I.: Discrete molecular dynamics studies of the folding of a protein-like model. Fold. Des. 3(6), 577–587 (1998)

    Article  Google Scholar 

  22. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A, OSA 7(6), 1055–1073 (1990)

    Google Scholar 

  23. Blavatska, V., Janke, W.: Shape anisotropy of polymers in disordered environment. J. Chem. Phys. 133(18), 184903 (2010)

    Article  Google Scholar 

  24. Rawdon, E.J., et al.: Effect of knotting on the shape of polymers. Macromolecules 41(21), 8281–8287 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramón E. R. González or Carlos Andrés Collazos-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avellaneda B., D.R., González, R.E.R., Ariza-Colpas, P., Morales-Ortega, R.C., Collazos-Morales, C.A. (2021). Structural Characterization of Linear Three-Dimensional Random Chains: Energetic Behaviour and Anisotropy. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics