Skip to main content

Neuroanatomical and Functional Relationship Between Parvocellular and Magnocellular Oxytocin and Vasopressin Neurons

  • Chapter
  • First Online:
Book cover Neuroanatomy of Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 12))

  • 1242 Accesses

Abstract

Hypothalamic neuroendocrine cells that synthesize oxytocin (OT) and vasopressin (AVP) can be categorized into two major cell types, namely magnocellular and parvocellular neurons. In addition to the previously known differences in morphology, connectivity, and electrophysiological properties, recent studies highlight fundamentally different functions and genetic compositions of these cells. Parvocellular OT neurons have recently been implicated in pain perception and processing, regulation of OT release during fear, and promotion of social behavior in female rats following gentle touch. Despite the vast knowledge of parvocellular OT neurons, surprisingly little is known about parvocellular AVP cells. The activity of AVP receptor-expressing presympathetic cells in the paraventricular nucleus of the hypothalamus is regulated by somato-dendritically released AVP from nearby magnocellular AVP cells. However, the contribution of actual parvocellular AVP neurons to this phenomenon remains questionable. Here we summarize the current body of knowledge about the neuroanatomy and functional relationship of the magnocellular and parvocellular OT and AVP systems. In addition, we discuss several controversial topics including the post-synaptic location of OT receptors, various modes of OT release, and misconceptions/fallacies that might have led to oversimplified models of the OT system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Auditory cortex

AN:

Accessory nuclei

AON:

Anterior olfactory nucleus

Arc:

Arcuate hypothalamic nucleus

AVP:

Arginine-vasopressin

BLA:

Basolateral amygdala

BNST:

Bed nucleus of stria terminalis

BS:

Brainstem

CB:

Cerebellum

CeA:

Central amygdala

CRH:

Corticotropin-releasing hormone

HC:

Hippocampus

HDB:

Horizontal limb of diagonal band nucleus

iCj:

Island of Calleja

LC:

Locus coeruleus

LS:

Lateral septum

magnAVP neuron:

magnocellular vasopressin neuron

magnOT neuron:

magnocellular oxytocin neuron

MC:

Motor cortex

MeA:

Medial amygdala

NAcc:

Nucleus accumbens

OB:

Olfactory bulb

OT:

oxytocin

parvAVP neuron:

parvocellular vasopressin neuron

parvOT neuron:

parvocellular oxytocin neuron

PC:

Piriform cortex

PFC:

Prefrontal cortex

PLC:

Prelimbic cortex

PV:

Paraventricular thalamus

PVN:

Paraventricular nucleus of the hypothalamus

RGC:

Retina ganglion cells

RMg:

Raphe magnus nucleus

RVLM:

Rostral ventrolateral medulla

SC:

Spinal cord

SCN:

Suprachiasmatic nucleus

SON:

Supraoptic nucleus

SSC:

Somatosensory cortex

Tu:

Olfactory tubercele

vDB:

Ventral diagonal band of Broca

References

  • Akiyama Y, Yoshimura M, Ueno H, Sanada K, Tanaka K, Sonoda S, Nishimura H, Nishimura K, Motojima Y, Saito R et al (2020) Peripherally administered cisplatin activates a parvocellular neuronal subtype expressing arginine vasopressin and enhanced green fluorescent protein in the paraventricular nucleus of a transgenic rat. J Physiol Sci 70:35

    Article  CAS  PubMed  Google Scholar 

  • Althammer F, Grinevich V (2017) Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J Neuroendocrinol https://doi.org/10.1111/jne.12549

  • Althammer F, Ferreira-Neto HC, Rubaharan M, Roy RK, Patel AA, Murphy A, Cox DN, Stern JE (2020) Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J Neuroinflammation 17:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biancardi VC, Son SJ, Sonner PM, Zheng H, Patel KP, Stern JE (2011) Contribution of central nervous system endothelial nitric oxide synthase to neurohumoral activation in heart failure rats. Hypertension 58:454–463

    Article  CAS  PubMed  Google Scholar 

  • Blevins JE, Schwartz MW, Baskin DG (2004) Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 287:R87–R96

    Article  CAS  PubMed  Google Scholar 

  • Brussaard AB, Kits KS, de Vlieger TA (1996) Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J Physiol 497(Pt 2):495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buijs RM (1983) Vasopressin and oxytocin—their role in neurotransmission. Pharmacol Ther 22:127–141

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM, Van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain—a synaptic event. Brain Res 252:71–76

    Article  CAS  PubMed  Google Scholar 

  • Burbach JP, Luckman SM, Murphy D, Gainer H (2001) Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 81:1197–1267

    Article  CAS  PubMed  Google Scholar 

  • Chini B, Manning M, Guillon G (2008) Affinity and efficacy of selective agonists and antagonists for vasopressin and oxytocin receptors: an “easy guide” to receptor pharmacology. Prog Brain Res 170:513–517

    Article  CAS  PubMed  Google Scholar 

  • Chini B, Verhage M, Grinevich V (2017) The action radius of oxytocin release in the Mammalian CNS: from single vesicles to behavior. Trends Pharmacol Sci 38:982–991

    Article  CAS  PubMed  Google Scholar 

  • Chu CP, Jin WZ, Bing YH, Jin QH, Kannan H, Qiu DL (2013) Effects of stresscopin on rat hypothalamic paraventricular nucleus neurons in vitro. PLoS One 8:e53863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vries GJ, Buijs RM, Van Leeuwen FW (1984) Sex differences in vasopressin and other neurotransmitter systems in the brain. Prog Brain Res 61:185–203

    Article  PubMed  Google Scholar 

  • Dolen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Du W, Stern JE, Filosa JA (2015) Neuronal-derived nitric oxide and somatodendritically released vasopressin regulate neurovascular coupling in the rat hypothalamic supraoptic nucleus. J Neurosci 35:5330–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumais KM, Veenema AH (2016) Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 40:1–23

    Article  CAS  PubMed  Google Scholar 

  • Duque-Wilckens N, Torres LY, Yokoyama S, Minie VA, Tran AM, Petkova SP, Hao R, Ramos-Maciel S, Rios RA, Jackson K et al (2020) Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc Natl Acad Sci USA 117:26406–26413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, Ciobanu AC, Triana del Rio R, Roth LC, Althammer F et al (2016) A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89:1291–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freund-Mercier MJ, Richard P (1984) Electrophysiological evidence for facilitatory control of oxytocin neurones by oxytocin during suckling in the rat. J Physiol 352:447–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinevich V, Ludwig M (2021) The multiple faces of the oxytocin and vasopressin systems in the brain. J Neuroendocrinol. https://doi.org/10.1111/jne.13004

  • Grinevich V, Neumann I (2021) Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry 26(1):265–279

    Article  CAS  PubMed  Google Scholar 

  • Grinevich VV, Polenov AL (1994) The evolution of the nonapeptidergic neurosecretory formations of the hypothalamus in vertebrate animals. Zh Evol Biokhim Fiziol 30:270–292

    CAS  PubMed  Google Scholar 

  • Grinevich V, Stoop R (2018) Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors. Neuron 99:887–904

    Article  CAS  PubMed  Google Scholar 

  • Grinevich V, Ma XM, Herman JP, Jezova D, Akmayev I, Aguilera G (2001) Effect of repeated lipopolysaccharide administration on tissue cytokine expression and hypothalamic-pituitary-adrenal axis activity in rats. J Neuroendocrinol 13:711–723

    Article  CAS  PubMed  Google Scholar 

  • Grinevich V, Harbuz M, Ma XM, Jessop D, Tilders FJ, Lightman SL, Aguilera G (2002) Hypothalamic pituitary adrenal axis and immune responses to endotoxin in rats with chronic adjuvant-induced arthritis. Exp Neurol 178:112–123

    Article  CAS  PubMed  Google Scholar 

  • Grinevich V, Ma XM, Jirikowski G, Verbalis J, Aguilera G (2003) Lipopolysaccharide endotoxin potentiates the effect of osmotic stimulation on vasopressin synthesis and secretion in the rat hypothalamus. J Neuroendocrinol 15:141–149

    Article  CAS  PubMed  Google Scholar 

  • Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  CAS  PubMed  Google Scholar 

  • Hasan MT, Althammer F, Silva da Gouveia M, Goyon S, Eliava M, Lefevre A, Kerspern D, Schimmer J, Raftogianni A, Wahis J et al (2019) A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron 103:133–146 e138

    Article  Google Scholar 

  • Hernandez VS, Vazquez-Juarez E, Marquez MM, Jauregui-Huerta F, Barrio RA, Zhang L (2015) Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus. Front Neuroanat 9:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes CL, Landry DW, Granton JT (2003) Science review: vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care 7:427–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308:245–248

    Article  CAS  PubMed  Google Scholar 

  • Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, Lewis EM, Luo L, Deisseroth K, Dolen G et al (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science 357:1406–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knobloch HS, Grinevich V (2014) Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R et al (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566

    Article  CAS  PubMed  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176

    Article  CAS  PubMed  Google Scholar 

  • Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I et al (2020) Parallel social information processing circuits are differentially impacted in autism. Neuron 108:659–675 e656

    Article  Google Scholar 

  • Lin YT, Chen CC, Huang CC, Nishimori K, Hsu KS (2017) Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat Commun 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136

    Article  CAS  PubMed  Google Scholar 

  • Luther JA, Tasker JG (2000) Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. J Physiol 523(Pt 1):193–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luther JA, Daftary SS, Boudaba C, Gould GC, Halmos KC, Tasker JG (2002) Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. J Neuroendocrinol 14:929–932

    Article  CAS  PubMed  Google Scholar 

  • Mack SO, Kc P, Wu M, Coleman BR, Tolentino-Silva FP, Haxhiu MA (2002) Paraventricular oxytocin neurons are involved in neural modulation of breathing. J Appl Physiol 92:826–834

    Article  CAS  PubMed  Google Scholar 

  • Mairesse J, Gatta E, Reynaert ML, Marrocco J, Morley-Fletcher S, Soichot M, Deruyter L, Camp GV, Bouwalerh H, Fagioli F et al (2015) Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinology 62:36–46

    Article  CAS  PubMed  Google Scholar 

  • Melis MR, Argiolas A, Gessa GL (1986) Oxytocin-induced penile erection and yawning: site of action in the brain. Brain Res 398:259–265

    Article  CAS  PubMed  Google Scholar 

  • Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC (2016) A distributed network for social cognition enriched for oxytocin receptors. J Neurosci 36:2517–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moos F, Richard P (1989) Paraventricular and supraoptic bursting oxytocin cells in rat are locally regulated by oxytocin and functionally related. J Physiol 408:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moos F, Freund-Mercier MJ, Guerne Y, Guerne JM, Stoeckel ME, Richard P (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102:63–72

    Article  CAS  PubMed  Google Scholar 

  • Moos F, Poulain DA, Rodriguez F, Guerne Y, Vincent JD, Richard P (1989) Release of oxytocin within the supraoptic nucleus during the milk ejection reflex in rats. Exp Brain Res 76:593–602

    Article  CAS  PubMed  Google Scholar 

  • Morris JF (1976) Hormone storage in individual neurosecretory granules of the pituitary gland: a quantitative ultrastructural approach to hormone storage in the neural lobe. J Endocrinol 68:209–224

    Article  CAS  PubMed  Google Scholar 

  • Nordmann JJ, Morris JF (1984) Method for quantitating the molecular content of a subcellular organelle: hormone and neurophysin content of newly formed and aged neurosecretory granules. Proc Natl Acad Sci USA 81:180–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oti T, Satoh K, Uta D, Nagafuchi J, Tateishi S, Ueda R, Takanami K, Young LJ, Galione A, Morris JF et al (2021) Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord. Curr Biol 31(1):103–114.e5

    Article  PubMed  Google Scholar 

  • Petersson M (2002) Cardiovascular effects of oxytocin. Prog Brain Res 139:281–288

    Article  CAS  PubMed  Google Scholar 

  • Pitra S, Zhang M, Cauley E, Stern JE (2019) NMDA receptors potentiate activity-dependent dendritic release of neuropeptides from hypothalamic neurons. J Physiol 597:1735–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potapenko ES, Biancardi VC, Florschutz RM, Ryu PD, Stern JE (2011) Inhibitory-excitatory synaptic balance is shifted toward increased excitation in magnocellular neurosecretory cells of heart failure rats. J Neurophysiol 106:1545–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rash JA, Aguirre-Camacho A, Campbell TS (2014) Oxytocin and pain: a systematic review and synthesis of findings. Clin J Pain 30:453–462

    Article  PubMed  Google Scholar 

  • Rhodes CH, Morrell JI, Pfaff DW (1981) Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol 198:45–64

    Article  CAS  PubMed  Google Scholar 

  • Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpar A, Mulder J, Clotman F, Keimpema E et al (2017) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 20:176–188

    Article  CAS  PubMed  Google Scholar 

  • Roper P, Callaway J, Shevchenko T, Teruyama R, Armstrong W (2003) AHP’s, HAP’s and DAP’s: how potassium currents regulate the excitability of rat supraoptic neurones. J Comput Neurosci 15:367–389

    Article  PubMed  Google Scholar 

  • Sabatier N, Leng G, Menzies J (2013) Oxytocin, feeding, and satiety. Front Endocrinol (Lausanne) 4:35

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko T, Teruyama R, Armstrong WE (2004) High-threshold, Kv3-like potassium currents in magnocellular neurosecretory neurons and their role in spike repolarization. J Neurophysiol 92:3043–3055

    Article  CAS  PubMed  Google Scholar 

  • Smith AS, Williams Avram SK, Cymerblit-Sabba A, Song J, Young WS (2016) Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol Psychiatry 21:1137–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H, Patel KP, Tobin VA, Ludwig M, Stern JE (2013) Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78:1036–1049

    Article  CAS  PubMed  Google Scholar 

  • Stern JE, Armstrong WE (1995) Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. J Physiol 488(Pt 3):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern JE, Zhang W (2005) Cellular sources, targets and actions of constitutive nitric oxide in the magnocellular neurosecretory system of the rat. J Physiol 562:725–744

    Article  CAS  PubMed  Google Scholar 

  • Stern JE, Hestrin S, Armstrong WE (2000) Enhanced neurotransmitter release at glutamatergic synapses on oxytocin neurones during lactation in the rat. J Physiol 526(Pt 1):109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76:142–159

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31:410–417

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Benusiglio D, Lefevre A, Hilfiger L, Althammer F, Bludau A, Hagiwara D, Baudon A, Schimmer J, Kirchner MK et al (2020) Social touch promotes inter-female communication via oxytocin parvocellular neurons. Nat Neurosci 23:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Tasker JG, Dudek FE (1991) Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. J Physiol 434:271–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teruyama R, Armstrong WE (2007) Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus. J Neurophysiol 98:2612–2621

    Article  CAS  PubMed  Google Scholar 

  • Tobin VA, Hashimoto H, Wacker DW, Takayanagi Y, Langnaese K, Caquineau C, Noack J, Landgraf R, Onaka T, Leng G et al (2010) An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature 464:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin V, Leng G, Ludwig M (2012) The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Front Physiol 3:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji T, Allchorne AJ, Zhang M, Tsuji C, Tobin VA, Pineda R, Raftogianni A, Stern JE, Grinevich V, Leng G et al (2017) Vasopressin casts light on the suprachiasmatic nucleus. J Physiol 595:3497–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueta Y, Fujihara H, Serino R, Dayanithi G, Ozawa H, Matsuda K, Kawata M, Yamada J, Ueno S, Fukuda A et al (2005) Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology 146:406–413

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Tilders FJ, Burlet A (2001) Increased colocalization of corticotropin-releasing factor and arginine vasopressin in paraventricular neurones of the hypothalamus in lactating rats: evidence from immunotargeted lesions and immunohistochemistry. J Neuroendocrinol 13:74–85

    CAS  PubMed  Google Scholar 

  • Whitnall MH (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40:573–629

    Article  CAS  PubMed  Google Scholar 

  • Yuill EA, Hoyda TD, Ferri CC, Zhou QY, Ferguson AV (2007) Prokineticin 2 depolarizes paraventricular nucleus magnocellular and parvocellular neurons. Eur J Neurosci 25:425–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Qiu L, Xiao W, Ni H, Chen L, Wang F, Mai W, Wu J, Bao A, Hu H et al (2021) Reconstruction of the hypothalamo-neurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain. Neuron 109(2):331–346.e7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Funding

This work was supported by DFG Postdoc Fellowship AL 2466/1-1 to FA; National Institute of Heart and Lung Grant NIH R01HL090948 and National Institute of Neurological Disorders and Stroke Grant NIH R01NS094640 to JES; (DFG) grants: GR 3619/8-1, GR 3619/13-1, GR 3619/15-1, GR 3619/16-1, and DFG Consortium SFB 1158/2 to VG.

Key References

Althammer F. and Grinevich V., 2017 Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J Neuroendocrinol. doi: https://doi.org/10.1111/jne.12549. Comprehensive review about common and distinct features of magno- and parvocellular OT cells that lists the most commonly used methods for cell type discrimination.

Chini, B., Verhage, M., and Grinevich, V. (2017). The Action Radius of Oxytocin Release in the Mammalian CNS: From Single Vesicles to Behavior. Trends Pharmacol Sci 38, 982–991. This paper illustrates how OT acts on nearby and distant targets and discusses receptor affinity and the role of the OT concentration gradient.

Eliava, M., Melchior, M., Knobloch-Bollmann, H.S., Wahis, J., da Silva Gouveia, M., Tang, Y., Ciobanu, A.C., Triana del Rio, R., Roth, L.C., Althammer, F., et al. (2016). A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing. Neuron 89, 1291–1304. This is the first paper to show a clear, functionally relevant connection from parvocellular PVN OT neurons to magnocellular OT neurons in the SON.

Grinevich, V., and Neumann, I. (2020). Brain oxytocin: How puzzle stones from animal studies translate into psychiatry. Molecular Psychiatry. Review of the translational aspects of OT-related behavioral studies in rodents.

Grinevich, V., and Stoop, R. (2018). Interplay between Oxytocin and Sensory Systems in the Orchestration of Socio-Emotional Behaviors. Neuron 99, 887–904. Comprehensive review of the role of OT in the development and regulation of sensory modalities.

Hasan, M.T., Althammer, F., Silva da Gouveia, M., Goyon, S., Eliava, M., Lefevre, A., Kerspern, D., Schimmer, J., Raftogianni, A., Wahis, J., et al. (2019). A Fear Memory Engram and Its Plasticity in the Hypothalamic Oxytocin System. Neuron 103, 133–146 e138. This paper demonstrates that parvocellular OT neurons tightly control the fear response and release of OT from magnocellular OT neurons.

Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H., Osten, P., Schwarz, M.K., Seeburg, P.H., Stoop, R., et al. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566. This seminal paper showed that OT neurons project to more than 50+ forebrain regions.

Ludwig, M., and Leng, G. (2006). Dendritic peptide release and peptide-dependent behaviours. Nat Rev. Neurosci 7, 126–136. Brilliant review about the role and mechanisms of somato-dendritically released peptides in the brain.

Luther, J.A., and Tasker, J.G. (2000). Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. J Physiol 523 Pt 1, 193–209. Seminal work on the different electrophysiological features of magnocellular and parvocellular neurons in the PVN.

Son, S.J., Filosa, J.A., Potapenko, E.S., Biancardi, V.C., Zheng, H., Patel, K.P., Tobin, V.A., Ludwig, M., and Stern, J.E. (2013). Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78, 1036–1049. This paper highlights the role of somato-dendritically released AVP in the regulation of preautonomic networks in the PVN.

Stern, J.E., and Armstrong, W.E. (1995). Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. J Physiol 488 (Pt 3), 701–708. Classical paper addressing the different electrophysiological properties of AVP and OT neurons.

Tang, Y., Benusiglio, D., Lefevre, A., Hilfiger, L., Althammer, F., Bludau, A., Hagiwara, D., Baudon, A., Schimmer, J., Kirchner, M.K., et al. (2020). Social touch promotes inter-female communication via oxytocin parvocellular neurons. Nat Neurosci 23, 1125–1137. First paper to show that OT neurons are activated during social interactions using in vivo recordings of identified OT neurons.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ferdinand Althammer , Javier E. Stern or Valery Grinevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Althammer, F., Stern, J.E., Grinevich, V. (2021). Neuroanatomical and Functional Relationship Between Parvocellular and Magnocellular Oxytocin and Vasopressin Neurons. In: Grinevich, V., Dobolyi, Á. (eds) Neuroanatomy of Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-86630-3_6

Download citation

Publish with us

Policies and ethics