Skip to main content

Functional Neuroanatomy of Relaxin-3/RXFP3 Systems in the Brain: Implications for Integrated Neuroendocrine and Behavioural Control

  • Chapter
  • First Online:
Neuroanatomy of Neuroendocrine Systems

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 12))

  • 974 Accesses

Abstract

Neuropeptides play key neuromodulatory roles in the mammalian central nervous system. Relaxin-3, a neuropeptide discovered by homology searching of the human genome 20 years ago, and its cognate G-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3), discovered in studies of brain-enriched ‘orphan’ receptors, have since been shown to modulate neuronal activity in multiple brain circuits. The early anatomical association of this neuropeptide/receptor signalling system with the enigmatic nucleus incertus (NI) located in the pontine tegmentum of a range of mammalian brains prompted a large number of anatomical, regulatory and pharmacological studies. In this chapter, we summarize current knowledge of the neuroanatomy of the relaxin-3/RXFP3 system in the mammalian brain and detail the comprehensive studies of its functional relationship with the magnocellular and parvocellular oxytocin (OXT) and arginine-vasopressin (AVP) neurons in the paraventricular nucleus of the hypothalamus (PVN) in the rat. More generally, we review pharmacological studies using novel, chimeric and truncated peptides selective for RXFP3 compared to other relaxin-family receptors, which have identified several aspects of physiology and behaviour in rats and mice that are likely to be regulated by the endogenous relaxin-3/RXFP3 system; these include arousal, circadian rhythms, feeding and metabolism, social and stress-related behaviour, autonomic responses and cognition. Lastly, as a future perspective, we highlight some key issues, including the nature and regulation of neuronal relaxin-3 release and the precise location and function of RXFP3 in specific neural circuits, which require further research to improve our understanding of this complex and therapeutically relevant neuromodulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Amy:

amygdala

AN:

anorexia nervosa

AVP:

arginine vasopressin

BED:

binge-eating disorder

BN:

bulimia nervosa

CRH:

corticotropin-releasing hormone

dHipp:

dorsal hippocampus

DMH:

dorsomedial hypothalamic nucleus

DpMe:

deep mesencephalon

dSN:

dorsal to substantia nigra

HPA:

hypothalamic-pituitary-adrenal (axis)

HPG:

hypothalamic-pituitary-gonadal (axis)

ICV:

intracerebroventricular

INSL3–6:

insulin-like peptide 3–6

IO:

inferior olive

IPN:

interpeduncular nucleus

LH:

lateral hypothalamus

LPA:

lateral preoptic area

MCH:

melanin-concentrating hormone

MNCs:

magnocellular neurosecretory cells

MnR:

median raphe nucleus

MS:

medial septum

MVe:

medial vestibular nucleus

NI:

nucleus incertus

NTS:

nucleus of solitary tract

OX (A/B):

orexin-A/B

OXT:

oxytocin

PH:

posterior hypothalamic area

PnR:

pontine raphé nucleus

PrH:

prepositus hypoglossal nucleus

PVN:

paraventricular nucleus of hypothalamus

RLN3:

relaxin-3

RXFP1–4:

relaxin-family peptide receptor 1–4

SON:

supraoptic nucleus

SuM:

supramammillary nucleus

vHipp:

ventral hippocampus

vlPAG:

ventrolateral periaqueductal grey

References

  • Adamantidis A, de Lecea L (2009) The hypocretins as sensors for metabolism and arousal. J Physiol 587:33–40

    Article  PubMed  Google Scholar 

  • Albert-Gasco H, Sanchez-Sarasua S, Ma S et al (2019) Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 224:453–469

    Article  PubMed  Google Scholar 

  • Arcelus J, Mitchell AJ, Wales J, Nielsen S (2011) Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Arch Gen Psychiatry 68:724–731

    Article  PubMed  Google Scholar 

  • Arletti R, Benelli A, Bertolini A (1990) Oxytocin inhibits food and fluid intake in rats. Physiol Behav 48:825–830

    Article  PubMed  Google Scholar 

  • Armstrong WE (2015) Hypothalamic supraoptic and paraventricular nuclei. In: The rat nervous system, 4th edn. Academic Press, San Diego, pp 295–314

    Chapter  Google Scholar 

  • Avery MC, Krichmar JL (2017) Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits 11:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Shen PJ, Ma S et al (2010) Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology 58:145–155

    Article  PubMed  Google Scholar 

  • Bannerman DM, Sprengel R, Sanderson DJ et al (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15:181–192

    Article  PubMed  Google Scholar 

  • Bathgate RAD, Samuel CS, Burazin TCD et al (2002) Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene: novel members of the relaxin peptide family. J Biol Chem 277:1148–1157

    Article  PubMed  Google Scholar 

  • Blasiak A, Blasiak T, Lewandowski MH et al (2013) Relaxin-3 innervation of the intergeniculate leaflet of the rat thalamus – neuronal tract-tracing and in vitro electrophysiological studies. Eur J Neurosci 37:1284–1294

    Article  PubMed  Google Scholar 

  • Blasiak A, Siwiec M, Grabowiecka A et al (2015) Excitatory orexinergic innervation of rat nucleus incertus – implications for ascending arousal, motivation and feeding control. Neuropharmacology 99:432–447

    Article  PubMed  Google Scholar 

  • Boels K, Hermans-Borgmeyer I, Schaller HC (2004) Identification of a mouse orthologue of the G-protein-coupled receptor SALPR and its expression in adult mouse brain and during development. Dev Brain Res 152:265–268

    Article  Google Scholar 

  • Botticelli L, Micioni Di Bonaventura E, Ubaldi M et al (2021) The neural network of neuropeptide S (NPS): implications in food intake and gastrointestinal functions. Pharmaceuticals 14:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Burazin TCD, Bathgate RAD, Macris M et al (2002) Restricted, but abundant, expression of the novel rat gene-3 (R3) relaxin in the dorsal tegmental region of brain. J Neurochem 82:1553–1557

    Article  PubMed  Google Scholar 

  • Calvez J, Lenglos C, de Ávila C et al (2015) Differential effects of central administration of relaxin-3 on food intake and hypothalamic neuropeptides in male and female rats. Genes Brain Behav 14:550–563

    Article  PubMed  Google Scholar 

  • Calvez J, de Ávila C, Guèvremont G, Timofeeva E (2016a) Sex-specific effects of chronic administration of relaxin-3 on food intake, body weight and hypothalamo-pituitary-gonadal axis in rats. J Neuroendocrinol 28:19–21. https://doi.org/10.1111/jne.12439

    Article  Google Scholar 

  • Calvez J, De Ávila C, Matte LO et al (2016b) Role of relaxin-3/RXFP3 system in stress-induced binge-like eating in female rats. Neuropharmacology 102:207–215

    Article  PubMed  Google Scholar 

  • Dallas M, Bell D (eds) (2021) Patch clamp electrophysiology. Springer

    Google Scholar 

  • de Ávila C, Chometton S, Lenglos C et al (2018) Differential effects of relaxin-3 and a selective relaxin-3 receptor agonist on food and water intake and hypothalamic neuronal activity in rats. Behav Brain Res 336:135–144

    Article  PubMed  Google Scholar 

  • de Ávila C, Chometton S, Calvez J et al (2020) Estrous cycle modulation of feeding and relaxin-3/Rxfp3 mRNA expression – implications for estradiol action. Neuroendocrinology. https://doi.org/10.1159/000513830

  • Deussing JM, Chen A (2018) The corticotropin-releasing factor family: physiology of the stress response. Physiol Rev 98:2225–2286

    Article  PubMed  Google Scholar 

  • Diniz GB, Bittencourt JC (2017) The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci 11:32. https://doi.org/10.3389/fnsys.2017.00032

    Article  PubMed  PubMed Central  Google Scholar 

  • Donizetti A, Grossi M, Pariante P et al (2008) Two neuron clusters in the stem of postembryonic zebrafish brain specifically express relaxin-3 gene: first evidence of nucleus incertus in fish. Dev Dyn 237:3864–3869

    Article  PubMed  Google Scholar 

  • Donizetti A, Fiengo M, Iazzetti G et al (2015) Expression analysis of five zebrafish rxfp3 homologues reveals evolutionary conservation of gene expression pattern. J Exp Zool Part B Mol Dev Evol 324:22–29

    Article  Google Scholar 

  • Drewett RF (1973) Oestrous and dioestrous components of the ovarian inhibition on hunger in the rat. Anim Behav 21:772–780

    Article  PubMed  Google Scholar 

  • Eckel LA, Houpt TA, Geary N (2000) Spontaneous meal patterns in female rats with and without access to running wheels. Physiol Behav 70:397–405

    Article  PubMed  Google Scholar 

  • Farooq U, Rajkumar R, Sukumaran S et al (2013) Corticotropin-releasing factor infusion into nucleus incertus suppresses medial prefrontal cortical activity and hippocampo-medial prefrontal cortical long-term potentiation. Eur J Neurosci 38:2516–2525

    Article  PubMed  Google Scholar 

  • Furuya WI, Dhingra RR, Gundlach AL et al (2020) Relaxin-3 receptor (RXFP3) activation in the nucleus of the solitary tract modulates respiratory rate and the arterial chemoreceptor reflex in rat. Respir Physiol Neurobiol 271:103310

    Article  PubMed  Google Scholar 

  • Ganella DE, Callander GE, Ma S et al (2013a) Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 20:703–716

    Article  PubMed  Google Scholar 

  • Ganella DE, Ma S, Gundlach AL (2013b) Relaxin-3/RXFP3 signaling and neuroendocrine function – a perspective on extrinsic hypothalamic control. Front Endocrinol (Lausanne) 4:1–11

    Article  Google Scholar 

  • Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F et al (2021) Involvement of the nucleus incertus and relaxin-3/RXFP3 signaling system in explicit and implicit memory. Front Neuroanat 15:637922. https://doi.org/10.3389/fnana.2021.637922

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438:86–122

    Article  PubMed  Google Scholar 

  • Haidar M, Guèvremont G, Zhang C et al (2017) Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in ‘floxed-RXFP3’ mice impairs spatial memory. Hippocampus 27:529–546

    Article  PubMed  Google Scholar 

  • Haugaard-Kedström LM, Shabanpoor F, Hossain MA et al (2011) Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J Am Chem Soc 133:4965–4974

    Article  PubMed  Google Scholar 

  • Hida T, Takahashi E, Shikata K et al (2006) Chronic intracerebroventricular administration of relaxin-3 increases body weight in rats. J Recept Signal Transduct 26:147–158

    Article  Google Scholar 

  • Hosken IT, Sutton SW, Smith CM, Gundlach AL (2015) Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res 278:167–175

    Article  PubMed  Google Scholar 

  • Hudson JI, Hiripi E, Pope HG, Kessler RC (2007) The prevalence and correlates of eating disorders in the national comorbidity survey replication. Biol Psychiatry 61:348–358

    Article  PubMed  Google Scholar 

  • Hutson PH, Balodis IM, Potenza MN (2018) Binge-eating disorder: clinical and therapeutic advances. Pharmacol Ther 182:15–27

    Article  PubMed  Google Scholar 

  • Jurek B, Neumann ID (2018) The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev 98:1805–1908

    Article  PubMed  Google Scholar 

  • Kania A, Gugula A, Grabowiecka A et al (2017) Inhibition of oxytocin and vasopressin neuron activity in rat hypothalamic paraventricular nucleus by relaxin-3-RXFP3 signalling. J Physiol 595:3425–3447

    Article  PubMed  PubMed Central  Google Scholar 

  • Kania A, Szlaga A, Sambak P et al (2020) RLN3/RXFP3 signaling in the PVN inhibits magnocellular neurons via M-like current activation and contributes to binge eating behavior. J Neurosci 40:5362–5375

    Article  PubMed  PubMed Central  Google Scholar 

  • Kastman HE, Blasiak A, Walker L et al (2016) Nucleus incertus orexin-2 receptors mediate alcohol seeking in rats. Neuropharmacology 110:82–91. https://doi.org/10.1016/j.neuropharm.2016.07.006

    Article  PubMed  Google Scholar 

  • Kessler RC, Berglund PA, Chiu WT et al (2013) The prevalence and correlates of binge eating disorder in the World Health Organization world mental health surveys. Biol Psychiatry 73:904–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Klump KL, Racine S, Hildebrandt B, Sisk CL (2013) Sex differences in binge eating patterns in male and female adult rats. Int J Eat Disord 46:729–736

    Article  PubMed  Google Scholar 

  • Koshimizu T, Nakamura K, Egashira N et al (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92:1813–1864

    Article  PubMed  Google Scholar 

  • Kuei C, Sutton S, Bonaventure P et al (2007) R3(BΔ23-27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem 282:25425–25435

    Article  PubMed  Google Scholar 

  • Lenglos C, Mitra A, Guèvremont G, Timofeeva E (2013) Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats. Genes Brain Behav 12:370–387

    Article  PubMed  Google Scholar 

  • Lenglos C, Mitra A, Guèvremont G, Timofeeva E (2014) Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides 48:119–132

    Article  PubMed  Google Scholar 

  • Lenglos C, Calvez J, Timofeeva E (2015) Sex-specific effects of relaxin-3 on food intake and brain expression of corticotropin-releasing factor in rats. Endocrinology 156:523–533

    Article  PubMed  Google Scholar 

  • Levine JE (2015) Neuroendocrine control of the ovarian cycle of the rat. In: Knobil and Neill’s physiology of reproduction: two-volume set. Academic Press, Cambridge, pp 1199–1257

    Chapter  Google Scholar 

  • Liu C, Eriste E, Sutton S et al (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem 278:50754–50764

    Article  PubMed  Google Scholar 

  • Lu L, Ren Y, Yu T et al (2020) Control of locomotor speed, arousal, and hippocampal theta rhythms by the nucleus incertus. Nat Commun 11:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Luther JA, Tasker JG (2000) Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. J Physiol 523:193–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Gundlach AL (2015) Ascending control of arousal and motivation: role of nucleus incertus and its peptide neuromodulators in behavioural responses to stress. J Neuroendocrinol 27:457–467

    Article  PubMed  Google Scholar 

  • Ma S, Shen PJ, Burazin TCD et al (2006) Comparative localization of leucine-rich repeat-containing g-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action? Neuroscience 141:329–344

    Article  PubMed  Google Scholar 

  • Ma S, Bonaventure P, Ferraro T et al (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 144:165–190

    Article  PubMed  Google Scholar 

  • Ma S, Sang Q, Lanciego JL, Gundlach AL (2009a) Localization of relaxin-3 in brain of Macaca fascicularis: identification of a nucleus incertus in primate. J Comp Neurol 517:856–872

    Article  PubMed  Google Scholar 

  • Ma S, Shen PJ, Sang Q et al (2009b) Distribution of relaxin-3 mRNA and immunoreactivity and RXFP3-binding sites in the brain of the macaque, macaca fascicularis. Ann N Y Acad Sci 1160:256–258

    Article  PubMed  Google Scholar 

  • Ma S, Blasiak A, Olucha-Bordonau FE et al (2013) Heterogeneous responses of nucleus incertus neurons to corticotrophin-releasing factor and coherent activity with hippocampal theta rhythm in the rat. J Physiol 591:3981–4001

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Smith CM, Blasiak A, Gundlach AL (2017) Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 174:1034–1048

    Article  PubMed  Google Scholar 

  • Matsumoto M, Kamohara M, Sugimoto T et al (2000) The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene 248:183–189

    Article  PubMed  Google Scholar 

  • McGowan BMC, Stanley SA, Smith KL et al (2005) Central relaxin-3 administration causes hyperphagia in male wistar rats. Endocrinology 146:3295–3300

    Article  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL et al (2006) Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul Pept 136:72–77

    Article  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, White NE et al (2007) Hypothalamic mapping of orexigenic action and Fos-like immunoreactivity following relaxin-3 administration in male Wistar rats. Am J Physiol Endocrinol Metab 292:E913–E919

    Article  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, Donovan J et al (2008) Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis. Am J Physiol Endocrinol Metab 295:E278–E286

    Article  PubMed  PubMed Central  Google Scholar 

  • McGowan BM, Minnion JS, Murphy KG et al (2014) Relaxin-3 stimulates the neuro-endocrine stress axis via corticotrophin-releasing hormone. J Endocrinol 221:337–346

    Article  PubMed  Google Scholar 

  • Merikangas KR, He JP, Burstein M et al (2010) Lifetime prevalence of mental disorders in US adolescents: results from the national comorbidity survey replication-adolescent supplement (NCS-A). J Am Acad Child Adolesc Psychiatry 49:980–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer AH, Langhans W, Scharrer E (1989) Vasopressin reduces food intake in goats. Q J Exp Physiol 74:465–473

    Article  PubMed  Google Scholar 

  • Nasirova N, Quina LA, Morton G et al (2020) Mapping cell types and efferent pathways in the ascending relaxin-3 system of the nucleus incertus. eNeuro 7:1–23

    Article  Google Scholar 

  • Ohki-Hamazaki H (2016) Neuromedin B. In: Handbook of hormones. Elsevier, Amsterdam

    Google Scholar 

  • Okada Y (ed) (2012) Patch clamp techniques. Springer, Tokyo

    Google Scholar 

  • Olucha-Bordonau FE, Teruel V, Barcia-González J et al (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464:62–97

    Article  PubMed  Google Scholar 

  • Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F et al (2018) Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 24:694–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Otsubo H, Onaka T, Suzuki H et al (2010) Centrally administered relaxin-3 induces Fos expression in the osmosensitive areas in rat brain and facilitates water intake. Peptides 31:1124–1130

    Article  PubMed  Google Scholar 

  • Pei H, Sutton AK, Burnett KH et al (2014) AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol Metab 3:209–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Prevot V, Dehouck B, Sharif A et al (2018) The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 39:333–368

    Article  PubMed  Google Scholar 

  • Rajkumar R, Wu Y, Farooq U et al (2016) Stress activates the nucleus incertus and modulates plasticity in the hippocampo-medial prefrontal cortical pathway. Brain Res Bull 120:83–89

    Article  PubMed  Google Scholar 

  • Ryan PJ, Ma S, Olucha-Bordonau FE, Gundlach AL (2011) Nucleus incertus – an emerging modulatory role in arousal, stress and memory. Neurosci Biobehav Rev 35:1326–1341

    Article  PubMed  Google Scholar 

  • Ryan PJ, Büchler E, Shabanpoor F et al (2013a) Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav Brain Res 244:142–151

    Article  PubMed  Google Scholar 

  • Ryan PJ, Kastman HE, Krstew EV et al (2013b) Relaxin-3/RXFP3 system regulates alcohol-seeking. Proc Natl Acad Sci U S A 110:20789–20794

    Article  PubMed  PubMed Central  Google Scholar 

  • Rytova V, Ganella DE, Hawkes D et al (2019) Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 29:905–920

    Article  PubMed  Google Scholar 

  • Sabetghadam A, Grabowiecka-Nowak A, Kania A et al (2018) Melanin-concentrating hormone and orexin systems in rat nucleus incertus: dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 139:238–256

    Article  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  PubMed  Google Scholar 

  • Santos FN, Pereira CW, Sánchez-Pérez AM et al (2016) Comparative distribution of relaxin-3 inputs and calcium-binding protein-positive neurons in rat amygdala. Front Neuroanat 10:36. https://doi.org/10.3389/fnana.2016.00036

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabanpoor F, Akhter Hossain M, Ryan PJ et al (2012) Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1. J Med Chem 55:1671–1681

    Article  PubMed  Google Scholar 

  • Smith CM, Shen PJ, Banerjee A et al (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 518:4016–4045

    Article  PubMed  Google Scholar 

  • Smith CM, Hosken IT, Sutton SW, Lawrence AJ, Gundlach AL (2012) Relaxin-3 null mutation mice display a circadian hypoactivity phenotype. Genes Brain Behav 11:94–104

    Article  PubMed  Google Scholar 

  • Smith CM, Hosken IT, Downer NL et al (2013) Pharmacological activation of RXFP3 is not orexigenic in C57BL/6J mice. Ital J Anat Embryol 118:52–55

    PubMed  Google Scholar 

  • Smith CM, Chua BE, Zhang C et al (2014a) Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res 268:117–126

    Article  PubMed  Google Scholar 

  • Smith CM, Walker AW, Hosken IT et al (2014b) Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 5:46. https://doi.org/10.3389/fphar.2014.00046

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CM, Walker LL, Chua BE et al (2015) Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 100:1064–1072

    Article  PubMed  Google Scholar 

  • Streeter GL (1903) Anatomy of the floor of the fourth ventricle. (the relations between the surface markings and the underlying structures.). Am J Anat 2:299–313

    Article  Google Scholar 

  • Sudo S, Kumagai J, Nishi S et al (2003) H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem 278:7855–7862

    Article  PubMed  Google Scholar 

  • Sutton SW, Bonaventure P, Kuei C et al (2004) Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology 80:298–307

    Article  PubMed  Google Scholar 

  • Swanson SA, Crow SJ, Le Grange D et al (2011) Prevalence and correlates of eating disorders in adolescents: results from the national comorbidity survey replication adolescent supplement. Arch Gen Psychiatry 68:714–723

    Article  PubMed  PubMed Central  Google Scholar 

  • Szőnyi A, Sos KE, Nyilas R et al (2019) Brainstem nucleus incertus controls contextual memory formation. Science 364:eaaw0445

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Iijima N, Miyamoto Y et al (2005) Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci 21:1659–1670

    Article  PubMed  Google Scholar 

  • Thornton SN, Fitzsimons JT (1995) The effects of centrally administered porcine relaxin on drinking behaviour in male and female rats. J Neuroendocrinol 7:165–169

    Article  PubMed  Google Scholar 

  • van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Westhuizen ET, Sexton PM, Bathgate RAD, Summers RJ (2005) Responses of GPCR135 to human gene 3 (H3) relaxin in CHO-K1 cells determined by microphysiometry. Ann N Y Acad Sci 1041:332–337

    Article  PubMed  Google Scholar 

  • Van Der Westhuizen ET, Werry TD, Sexton PM et al (2007) The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism. Mol Pharmacol 71:1618–1629

    Article  PubMed  Google Scholar 

  • Voglsanger LM, Read J, Ch’ng SS et al (2021) Differential level of RXFP3 expression in dopaminergic neurons within the arcuate nucleus, dorsomedial hypothalamus and ventral tegmental area of RXFP3-Cre/tdTomato mice. Front Neurosci 14:594818

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Smith CM, Chua BE et al (2015) Relaxin-3 receptor (RXFP3) signalling mediates stress-related alcohol preference in mice. PLoS One 10:e0122504

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker LC, Kastman HE, Koeleman JA et al (2017) Nucleus incertus corticotrophin-releasing factor 1 receptor signalling regulates alcohol seeking in rats. Addict Biol 22:1641–1654

    Article  PubMed  Google Scholar 

  • Yoshimura M, Nishimura K, Nishimura H et al (2017) Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system. Sci Rep 7:1–10

    Article  Google Scholar 

  • Zhang W, Wang D, Liu XH et al (2009) An osmosensitive voltage-gated K+ current in rat supraoptic neurons. Eur J Neurosci 29:2335–2346

    Article  PubMed  Google Scholar 

  • Zhang C, Chua BE, Yang A et al (2015) Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behav Brain Res 292:125–132

    Article  PubMed  Google Scholar 

  • Zhou JJ, Gao Y, Kosten TA et al (2017) Acute stress diminishes M-current contributing to elevated activity of hypothalamic-pituitary-adrenal axis. Neuropharmacology 114:67–76

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the major contribution of their colleagues working in the fields of relaxin-3/RXFP3 system chemistry, pharmacology, anatomy and neurobiology over the last two decades. The research studies reviewed in this chapter conducted in the authors’ laboratories were supported by The National Science Centre, Poland (project grant UMO-2018/30/E/NZ4/00687 to AB, and PhD Scholarship ETIUDA V UMO-2017/24/T/NZ4/00225 to AK) and the National Health and Medical Research Council of Australia (project grant 1067522 to ALG). All figures were created with BioRender.com.

Key Literature (5–12 Articles) (Further Recommended Reading)

  • Blasiak et al. (2013) The first description of the existence of specific relaxin-3 neuron projections from ventrolateral PAG (but not nucleus incertus) to the intergeniculate nucleus in the rat.

  • Blasiak et al. (2015) The first study to identify different electrophysiological phenotypes of nucleus incertus neurons and their responses to the arousal-related orexin neuropeptides.

  • Hosken et al. (2015) Description of the reduced running wheel activity of mice lacking the RXFP3 gene/protein relative to wildtype littermates, in line with a similar phenotype of mice with a relaxin-3 gene/protein deletion.

  • Kania et al. (2020) The first study to demonstrate an RXFP3-related blockade of binge eating in female rats via actions within the PVN on oxytocin and arginine-vasopressin neurons.

  • Ma S et al. (2007) Comprehensive description of the neuroanatomical distribution of relaxin-3 neurons (mRNA/peptide) and labelled fibres, and RXFP3 mRNA and binding sites in rat brain.

  • Ma et al. (2009) Description of the anatomy of relaxin-3 neurons and their projections in a non-human primate (Macaca fascicularis) brain.

  • Ma et al. (2009) Pharmacological studies demonstrating the modulation of hippocampal theta oscillations and spatial memory by RXFP3 signalling in medial septum.

  • Ma et al. (2013) Heterogeneous responses of nucleus incertus neurons to corticotropin-releasing hormone and coherent activity with hippocampal theta rhythm in the rat.

  • McGowan et al. (2005) The first description of the effect of central administration of relaxin-3 to increase feeding in rats.

  • Smith et al. (2010) Comprehensive description of the neuroanatomy of relaxin-3 neurons (mRNA/peptide) and immunolabelled fibres, and RXFP3 mRNA/binding sites in mouse brain.

  • Tanaka et al. (2005) The first description of the neuroanatomical distribution of relaxin-3 neurons and immunolabelled nerve fibres in rat brain and their response to environmental stressors.

Details of Key References

  • [Blasiak A, Blasiak T, Lewandowski MH, Hossain MA, Wade JD, Gundlach AL (2013) Relaxin-3 innervation of the intergeniculate leaflet of the rat thalamus – neuronal tract-tracing and in vitro electrophysiological studies. Eur J Neurosci 37:1284–1294.]

  • [Blasiak A, Siwiec M, Grabowiecka A, Blasiak T, Czerw A, Blasiak E, Kania A, Rajfur Z, Lewandowski MH, Gundlach AL (2015) Excitatory orexinergic innervation of rat nucleus incertus – Implications for ascending arousal, motivation and feeding control. Neuropharmacology 99:432–447.]

  • [Hosken IT, Sutton SW, Smith CM, Gundlach AL (2015) Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: Implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res 278:167–175.]

  • [Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A (2020) Relaxin-3/RXFP3 signaling in the PVN inhibits magnocellular neurons via M-like current activation and contributes to binge eating behavior. J Neurosci 40:5362–5375.]

  • [Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TCD, Bathgate RAD, Liu C, Tregear GW, Sutton SW, Gundlach AL (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 144:165–190.]

  • [Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu C, Wade JD, Sutton SW, Nunez A, Gundlach AL (2009) Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem 16:730–742.]

  • [Ma S, Sang Q, Lanciego JL, Gundlach AL (2009) Localization of relaxin-3 in brain of Macaca fascicularis: identification of a nucleus incertus in primate. J Comp Neurol 517:856–872.]

  • [Ma S, Blasiak A, Olucha-Bordonau FE, Verberne AJ, Gundlach AL (2013) Heterogeneous responses of nucleus incertus neurons to corticotrophin-releasing factor and coherent activity with hippocampal theta rhythm in the rat. J Physiol (Lond) 591:3981–4001.]

  • [McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology 146:3295–3300.]

  • [Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RAD, Sutton SW, Gundlach AL (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective and cognitive circuits of mouse brain. J Comp Neurol 518:4016–4045.]

  • [Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H, Ibata Y (2005) Neurons expressing relaxin 3/INSL7 in the nucleus incertus respond to stress. Eur Neurosci 21:1659–1670.]

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Blasiak or Andrew L. Gundlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kania, A., Blasiak, A., Gundlach, A.L. (2021). Functional Neuroanatomy of Relaxin-3/RXFP3 Systems in the Brain: Implications for Integrated Neuroendocrine and Behavioural Control. In: Grinevich, V., Dobolyi, Á. (eds) Neuroanatomy of Neuroendocrine Systems. Masterclass in Neuroendocrinology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-86630-3_16

Download citation

Publish with us

Policies and ethics