Skip to main content

Woody Vegetation Composition and Structure of Church Forests in Southeast of Lake Tana, Northwest Ethiopia

  • Conference paper
  • First Online:
  • 372 Accesses

Abstract

Understanding woody plant species composition and structure is fundamental to design and optimize the needed conservation measures for Ethiopian church forests. The aim of this study was to describe the composition, structure, and regeneration status of woody species in church forests in southeast of Lake Tana, Ethiopia. Data were collected from twenty-four church forests. Four plots (20 m × 20 m) were established in each church forest. Plots were located in four cardinal directions (north, east, west, and south) at different distances from the forest center. Four subplots (5 m × 5 m) were established in each plot to assess seedlings and canopy cover. In each plot, all woody plants were identified and counted, and diameter at breast height (DBH) was measured. Species and family importance values were computed to characterize the species composition. Additionally, population structural features were analyzed through the variation of tree size classes. Species richness (SR), Pilou evenness (Jʹ), and Shannon–Wiener index (Hʹ) were used to determine species diversity. A total of 115 woody species representing 53 families and 97 genera were found. Of these, 62% were trees, 36% shrubs, 1.89% climber, and 0.06% reed species. Species richness differed among forests, ranging between 16 and 38 species. Fabaceae, Sapotaceae, and Rubiaceae were the dominant families with a high family importance values of 41, 28, and 22, respectively. The church forests have relatively high indices of species diversity (SR = 26 ± 1.25), (Jʹ = 0.75 ± 0.02), and (Hʹ = 2.42 ± 0.07), indicating that they play a major role in the conservation of woody species. However, a relatively high densities of Eucalyptus spp. ranging from 13 to 1925 individuals ha−1 were recorded, and these exotic tree species, thus, form a potential threat to the conservation of native species. The diameter class distribution of some selected keystone and dominant species formed four main shape types, of which the irregular-shaped pattern was most predominant, which suggests missing cohorts and regeneration problems for most species. Higher densities of Eucalyptus plantations were recorded in more recently established than old church forests. Therefore, effective measures should be taken to address the major pressures, such as plantation of exotic species that negatively affect the species composition and vegetation structure of these church forests, which, in turn, affect their ecosystem functions and services.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abiyot B, Sebsebe D, Zerihun W, Motuma D (2017) Woody species composition and structure of Kuandisha afromontane forest fragment in northwestern Ethiopia. J for Res 28(2):343–355

    Google Scholar 

  • Abyot D, Teshome S, Ensermu K, Abiyou T (2014) Diversity, structure and regeneration status of the woodland and riverine vegetation of Sire Beggo in Gololcha District Eastern Ethiopia. Momona Ethiop J Sci 6(1):70–96

    Google Scholar 

  • Aerts R, Van Overtveld K, Haile M, Hermy M, Deckers J, Muys B (2006) Species composition and diversity of small Afromontane forest fragments in northern Ethiopia. Plant Ecol 187(1):127–142

    Google Scholar 

  • Aerts R, Van Overtveld K, November E, Wassie A, Abiyu A, Demissew S, Daye DD, Giday K, Haile M, TewoldeBerhan S, Teketay D, Teklehaimanot Z, Binggeli P, Deckers J, Friis I, Gratzer G, Hermy M, Heyn M, Honnay O, Paris M, Sterck FJ, Muys B, Bongers F, Healey JR (2016) Conservation of the Ethiopian church forests: threats, opportunities and implications for their management. Sci Total Environ 551–552:404–414

    Google Scholar 

  • Alelign A, Teketay D, Yemshaw Y, Edwards S (2007) Diversity and status of regeneration of woody plants on the peninsula of Zegie, Northwestern Ethiopia. Trop Ecol 48(1):37–49

    Google Scholar 

  • Aynekulu E, Denich M, Tsegaye D, Aerts R, Neuwirth B, Boehmer HJ (2011) Dieback affects forest structure in a dry Afromontane forest in Northern Ethiopia. J Arid Environ 75(5):499–503

    Google Scholar 

  • Bekele T (1994) Phytosociology and ecology of a humid Afromontane forest on the Central Plateau of Ethiopia. J Veg Sci 5(1):87–98

    Google Scholar 

  • Bekele-Tesemma A (2007) Useful trees and shrubs of Ethiopia: Identification, Propagation and Management for 17 Agroclimatic Zones. In: Bo T, Ensermu K, Sebsibe D, Maundu P (eds) RELMA in ICRAF Project, Nairobi Kenya

    Google Scholar 

  • Bhagwat SA, Rutte C (2006) Sacred groves: potential for biodiversity management. Front Ecol Env 4(10):519–524

    Google Scholar 

  • Bishaw B (2001) Deforestation and land degredation in the Ethiopian highlands: a strategy for physical recovery. Northeast Afr Stud 8(1):7–25

    Google Scholar 

  • Bongers F, Wassie A, Sterck F, Bekele T, Teketay D (2006) Ecological restoration and church forests in Northern Ethiopia. J. Dry Lands 1(1):35–44

    Google Scholar 

  • Burkhard B, Kroll F, Nedkov S, Müller F (2012) Mapping ecosystem service supply, demand and budgets. Ecol Indic 21:17–29

    Google Scholar 

  • Cardelús CL, Scull P, Wassie Eshete A, Woods CL, Klepeis P, Kent E, Orlowska I (2017) Shadow conservation and the persistence of sacred church forests in Northern Ethiopia. Biotropica 49(5):726–733

    Google Scholar 

  • Cardelu’s C, Woods C, Bitew MA, Dexter S, Scull P, Tsegay B (2019) Human disturbance impacts the integrity of sacred church forests, Ethiopia. PLoS One 14(3):1–14

    Google Scholar 

  • Contreras-Hermosilla (2000) The underlying causes of forest decline the CGIAR system. In CIFOR Occas. Paper, pp 1–25

    Google Scholar 

  • Dai N, Kenji S, Akiko S (2002) Seedling establishment of deciduous trees in various topographic positions. J Veg Sci 13:35–44

    Google Scholar 

  • Darbyshire I, Lamb H, Umer M (2003) Forest clearance and regrowth in northern Ethiopia during the last 3000 years. Holocene 13(4):537–546

    Google Scholar 

  • Dudley N, Higgins-Zogib L, Mansourian S (2009) The links between protected areas, faiths, and sacred natural sites. Conserv Biol 23(3):568–577

    Google Scholar 

  • Edwards S, Tadesse M, Hedberg I (1995) Flora of Ethiopia and Eritrea Canellaceae to Euphorbiaceae. In: Sue E, Mesfin T, Inga H (eds) Natl. Herb. Ethiop. The National Herbarium Addis Ababa University, Addis Ababa, and Department of Systematic Botany, Uppsala University,Uppsala, Sweden

    Google Scholar 

  • Edwards S, Demissew S, Hedberg I (1997) Flora of Ethiopia and Eritrea Hydrocharitaceae to Arecaceae. In: Sue E, Sebsebe D, Inga H (eds) The National Herbarium Addis Ababa University, Addis Ababa, and Department of Systematic Botany, Uppsala University,Uppsala, Sweden

    Google Scholar 

  • Edwards S (1997) Flora of Ethiopia. In: Inga H, Sue E (eds) The national herbarium Addis Ababa University, Addis Ababa, and Department of Systematic Botany, Uppsala University,Uppsala, Sweden

    Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447

    Google Scholar 

  • EOTC (no date) Metsahef Senkesar and Areganone holy books

    Google Scholar 

  • Frankl A, Nyssen J, Adgo E, Wassie A, Scull P (2019) Can woody vegetation in valley bottoms protect from gully erosion? Insights using remote sensing data (1938–2016) from subhumid NW Ethiopia. Reg Environ Change 19(7):2055–2068

    Google Scholar 

  • Gashaw T, Terefe H, Soromessa T, Ahmed S (2015) Riparian areas rehabilitation and restoration: an overview. Point J Agric Biotechnol Res 1(2):55–63

    Google Scholar 

  • Gebeyehu G, Soromessa T, Bekele T, Teketay D (2019) Species composition, stand structure, and regeneration status of tree species in dry Afromontane forests of Awi Zone, Northwestern Ethiopia. Ecosyst Health Sustain 5(1):199–215

    Google Scholar 

  • Giliba RA, Boon EK, Kayombo CJ, Musamba EB (2011) Species composition, richness and diversity in Miombo Woodland of Bereku Forest Reserve Tanzania. Biodiversity 2(1):1–7

    Google Scholar 

  • Hailu BT, Maeda EE, Heiskanen J, Pellikka P (2015) Reconstructing pre-agricultural expansion vegetation cover of Ethiopia. Appl Geogr 62:357–365

    Google Scholar 

  • Hedberg I, Edwards S, Nemomissa S (2003) Flora of Ethiopia and Eritrea Apiaceae to Dipsaceae. In: Inga H, Sue E, Sileshi N (eds) The National Herbarium Addis Ababa University, Addis Ababa, and Department of Systematic Botany, Uppsala University,Uppsala, Sweden

    Google Scholar 

  • Help CHR, Herman PMJ, Soetaert K (1998) Indices of diversity and evenness. Oceanis 24(4):61–87

    Google Scholar 

  • Hokkanen PJ, Kouki J, Komonen A (2009) Nestedness, SLOSS and Conservation Networks of Boreal Herb-Rich Forests Nestedness, SLOSS and conservation networks of boreal herb-rich forests. Appl Veg Sci 12(3):295–303

    Google Scholar 

  • Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol Res 16:859–875

    Google Scholar 

  • Kyalangalilwa B, Boatwright JS, Daru BH, Maurin O, Bank MVD (2013) Phylogenetic position and revised classification of Acacia s. l. ( Fabaceae: Mimosoideae ) in Africa, including new combinations in Vachellia and Senegalia. Bot J Linn Soc 172:500–523

    Google Scholar 

  • Lamprecht H (1989) Silviculture in the Thopics. In: Tropical forestry ecosystems. Their Tree species possibilities methods their long-term utilization. Technical Cooperation Federal Republic of Germany

    Google Scholar 

  • Lemma H, Admasu T, Dessie M, Fentie D, Deckers J, Frankl A, Poesen J, Adgo E, Nyssen J (2018) Revisiting lake sediment budgets: how the calculation of lake lifetime is strongly data and method dependent. Earth Surf Process Landforms 43(3):593–607

    Google Scholar 

  • Logan WEM (1946) An introduction to the forests of central and southern Ethiopia. Imp For Inst 24:65

    Google Scholar 

  • Malik ZA, Bhatt AB (2016) Regeneration status of tree species and survival of their seedlings in kedarnath wildlife sanctuary and its adjoining areas in Western Himalaya. Trop Ecol 54(4):677–690

    Google Scholar 

  • Maua JO, MugatsiaTsingalia H, Cheboiwo J, Odee D (2020) Population structure and regeneration status of woody species in a remnant tropical forest: a case study of South Nandi forest Kenya. Glob Ecol Conserv 21:e00820. https://doi.org/10.1016/j.gecco.2019.e00820

    Article  Google Scholar 

  • Meragiaw M, Woldu Z, Martinsen V, Singh BR (2018) Woody species composition and diversity of riparian vegetation along the Walga River Southwestern Ethiopia. PLoS ONE 13(10):1–18

    Google Scholar 

  • Morgan R, KarimAly K, Asfaw Z (2018) Human ecology of sacred space: Church forests in the highlands of Northwestern Ethiopia. Enviromental Conserv 45(3):291–300

    Google Scholar 

  • Mori SA, Boom Baian M, de Carvalho AM, dos Santos TS (1983) Sothern Bahian moist forests. New York Bot Gard 49(2):155–232

    Google Scholar 

  • Mueller DD, Ellenberg H (1975) The count-plot method and plotless sampling techniques. In: Aims methods vegetation ecology, pp 158–159

    Google Scholar 

  • Muscolo A, Bagnato S, Sidari M, Mercurio R (2014) A review of the roles of forest canopy gaps. J for Res 25(4):725–736

    Google Scholar 

  • Nyssen J, Poesen J, Moeyersons J, Deckers J, Haile M, Lang A (2004) Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth-Science Rev 64(3–4):273–320

    Google Scholar 

  • Orlowska I, Klepeis P (2018) Ethiopian church forests: a socio-religious conservation model under change. J. East. African Stud 12(4):674–695

    Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA, Peel MC, Finlayson BL, Updated TAM (2007) Updated world map of the Köppen-Geiger climate classification To cite this version: HAL Id: hal-00298818 Updated world map of the K oppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4(2):439–473

    Google Scholar 

  • Peet RK (1974) The measurement of species diversity. Annu Rev Ecol Syst 5(1):285–307

    Google Scholar 

  • Reynolds T, Collins CD, Wassie A, Liang J, Briggs W, Lowman M, Sisay TS, Adamu E (2017) Sacred natural sites as mensurative fragmentation experiments in long-inhabited multifunctional landscapes. Ecography (cop.) 40:144–157

    Google Scholar 

  • Reynolds T, Sisay ST, Wassie A, Lowman M (2015) Sacred natural sites provide ecological libraries for landscape restoration and institutional models for biodiversity conservation. Policy Br 2015 U.N. Glob Sustain Dev Report, pp 1–4. Available at: https://sustainabledevelopment.un.org/content/documents/614059-Sacrednaturalsitesprovideecologicallibrariesforlandscaperestorationandinstitutionalmodelsforbiodi.pdf

  • Sabine G, Miehe G (1994) Ericaceous forests and heathlands in the Bale Mountains of South Ethiopia: ecology and man’s impact. T. Warnke Verlag, Hamburg

    Google Scholar 

  • Scull P, Cardelús CL, Klepeis P, Woods CL, Frankl A, Nyssen J (2017) The resilience of Ethiopian Church forests: interpreting aerial photographs. Land Degradation Dev 1938–2015458:450–458

    Google Scholar 

  • Song C, Nigatu L, Beneye Y, Abdulahi A, Zhang L (2018) Mapping the vegetation of the Lake Tana basin, Ethiopia, using Google Earth images, pp 2033–2041

    Google Scholar 

  • Tadele D, Lulekal E, Damtie D, Assefa A (2014) Floristic diversity and regeneration status of woody plants in Zengena Forest, a remnant montane forest patch in northwestern Ethiopia. J For Res 25(2):329–336

    Google Scholar 

  • Teketay D, Kashe K, Madome J, Kabelo M, Neelo J, Mmusi M (2018) Enhancement of diversity , stand structure and regeneration of woody species through area exclosure: the case of a mopane woodland in northern Botswana. Ecol Process 7(5). https://doi.org/10.1186/s13717-018-0116-x

  • Tesfaye G, Teketay D, Fetene M (2002) Regeneration of fourteen tree species in Harenna forest, southeastern Ethiopia. Flora 197:461–474

    Google Scholar 

  • Thijs KW, Aerts R, Van de Moortele P, Musila W, Gulinck H, Muys B (2014a) Contrasting cloud forest restoration potential between plantations of different exotic tree species. Restor Ecol 22(4):472–479

    Google Scholar 

  • Thijs KW, Aerts R, Musila W, Siljander M, Matthysen E, Lens L, Pellikka P, Gulinck H, Muys B (2014b) Potential tree species extinction, colonization and recruitment in Afromontane forest relicts. Basic Appl Ecol 15(4):288–296

    Google Scholar 

  • Wassie A, Teketay D, Powell N (2005) Church forests provide clues to restoring ecosystems in the degraded highlands of Northern Ethiopia. Ecol Restor 23(2):115–144

    Google Scholar 

  • Wassie A, Teketay D, Powell N (2005) Church forests in north gonder administrative zone, northern Ethiopia. For Trees Livelihoods 15:349–373

    Google Scholar 

  • Wassie A, Sterck FJ, Teketay D, Bongers F (2009) Effects of livestock exclusion on tree regeneration in church forests of Ethiopia. For Ecol Manage 257(3):765–772

    Google Scholar 

  • Wassie A, Sterck FJ, Teketay D, Bongers F (2009) Tree regeneration in church forests of Ethiopia: effects of microsites and management. Biotropica 41(1):110–119

    Google Scholar 

  • Wassie A, Sterck FJ, Bongers F (2010) Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. J Veg Sci 21(5):938–948

    Google Scholar 

  • Wassie (2007) Ethiopian church forests opportunities and challenges for restauration. Doctoral Dissertation, Wageningen University Wageningen, Netherlands. https://doi.org/10.1017/S0014479702003046

  • Woldemedhin T, Teketay D (2016) Forest conservation tradition of the Ethiopian Orthodox Tewahdo Church: a case study in West Gojjam Zone, north-western Ethiopia. Symb Bot Ups 38(16):57–73

    Google Scholar 

  • Woods CL, Cardelús CL, Scull P, Wassie A, Baez M, Klepeis P (2017) Stone walls and sacred forest conservation in Ethiopia. Biodivers Conserv 26(1):209–221

    Google Scholar 

  • Zegeye H, Teketay D, Kelbessa E (2011) Diversity and regeneration status of woody species in Tara Gedam and Abebaye forests, northwestern Ethiopia. J for Res 22(3):315–328

    Google Scholar 

  • Ziter CD, Pedersen EJ, Kucharik CJ, Turner MG (2019) Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc Natl Acad Sci USA 116(15):7575–7580

    Google Scholar 

Download references

Acknowledgements

This study received financial support from VLIR-UOS, Belgium, through the VLIR-IUC Interuniversity cooperation with Bahir Dar University, Ethiopia (BDU-IUC). We are grateful to all EOTC priests, monks, students, and local communities for access to the church forests, technical support and field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferehiwot Mequanint .

Editor information

Editors and Affiliations

Appendix 1: Species Name, Family, and the Relative Frequency of Occurrence in 24 Church Forests Southeast of Lake Tana, Ethiopia

Appendix 1: Species Name, Family, and the Relative Frequency of Occurrence in 24 Church Forests Southeast of Lake Tana, Ethiopia

Species name

Family

Relative frequency of occurrence (%)

Capparis tomentosa L

Capparidaceae

92

Justicia schimperiana (Hochst.ex Nees) T. Anders

Acanthaceae

92

Cordia africana Lam

Boraginaceae

83

Croton macrostachyus Del

Euphorbiaceae

83

Grewia ferruginea Hochst. ex A. Rich

Tiliaceae

83

Millettia ferruginea (Hochst.) Bak

Fabaceae

79

Maytenus arbutifolia (A.Rich.) Wilczek

Celastraceae

71

Mimusops kummel A. DC

Sapotaceae

71

Albizia schimperiana Oliv

Fabaceae

67

Calpurnia aurea (Ait.) Benth

Fabaceae

63

Carissa spinarum L

Apocynaceae

63

Celtis africana Burm.f

Ulmaceae

63

Pavetta abyssinica Fresen

Rubiaceae

63

Juniperus procera Hochst. ex Endl

Cupressaceae

58

Teclea nobilis Del

Rutaceae

58

Ficus thonningii Blume

Moraceae

54

Premna schimperia Engl

Lamiaceae

54

Clausena anisata (Willd.) Benth

Rutaceae

50

Vernonia myriantha Hook.f

Asteraceae

50

Acanthus sennii Chiov

Acanthaceae

42

Ocimum lamiifolium Hochst. ex Benth

Lamiaceae

42

Olea europaea L

Oleaceae

42

Coffea arabica L

Rubiaceae

38

Dracaena steudneri Engl

Dracaenaceae

38

Eucalyptus camaldulensis Dehnh

Myrtaceae

38

Diospyros abyssinica (Hiern) F.White

Ebenaceae

33

Vernonia amygdalina Del

Asteraceae

33

Cupressus lusitanica Mill

Cupressaceae

29

Entada abyssinica Steud.ex.A.Rich

Fabaceae

29

Ficus vasta Forssk

Moraceae

29

Ricinus communis L

Euphorbiaceae

29

Ritchiea albersii Gilg

Capparidaceae

29

Bersama abyssinica Fresen

Melianthaceae

25

Euclea racemosa Murr

Ebenaceae

25

Grevillea robusta R.Br

Proteaceae

25

Rhus quartiniana A.Rich

Anacardiaceae

25

Dovyalis abyssinica (A.Rich.) Warb

Flacourtiaceae

21

Flueggea virosa (Willd.) Voigt

Euphorbiaceae

21

Osyris quadripartita Decn

Santalaceae

21

Podocarpus falcatus (Thunb.) R. B. ex. Mirb

Podocarpaceae

21

Rhus vulgaris Meikle

Anacardiaceae

21

Rothmannia urcelliformis (Hiern) Robyns

Rubiaceae

21

Schrebera alata (Hochst.) Welw

Oleaceae

21

Senna singueana (Del.) Lock

Fabaceae

21

Acokanthera schimperi (A. DC.) Schweinf

Apocynaceae

17

Arundo donax L

Poaceae

17

Ekebergia capensis Sparrm

Meliaceae

17

Euphorbia tirucalli L

Euphorbiaceae

17

Ilex mitis (L.) Radlk

Aquifoliaceae

17

Acanthus pubescens (Oliv.) Engl

Acanthaceae

13

Brucea antidysenterica J.F.Mill

Simaroubaceae

13

Casuarina equisetifolia L

Casuarinaceae

13

Clerodendrum myricoides (Hochst.) Vatka

Lamiaceae

13

Dodonaea angustifolia L.f

Sapindaceae

13

Ehretia cymosa Thonn

Boraginaceae

13

Erythrina abyssinica Lam.ex DC

Fabaceae

13

Flacourtia indica (Burm.f) Merr

Flacourtiaceae

13

Gardenia fiorii Chiov

Rubiaceae

13

Jasminum abyssinicum Hochst. ex DC

Oleaceae

13

Jasminum grandiflorum L

Oleaceae

13

Phytolacca dodecandra L'H'erit

Phytolaccaceae

13

Pittosporum viridiflorum Sims

Pittosporaceae

13

Prunus africana (Hook. f.) kalkm

Rosaceae

13

Apodytes dimidiata E. Mey ex. Arn

Icacinaceae

8

Azadirachta indica A.Juss

Meliaceae

8

Citrus aurantifolia (Christm.)

Rutaceae

8

Citrus aurantium L

Rutaceae

8

Combretum molle R.Br.ex G.Don

Combretaceae

8

Dombeya torrida (J.F.Gmel.) P.Bamps

Sterculiaceae

8

Euphorbia abyssinica Gmel

Euphorbiaceae

8

Galiniera saxifraga (Hochst.) Bridson

Rubiaceae

8

Olea capensis L

Oleaceae

8

Opuntia ficus-indica (L.) Miller

Cactaceae

8

Piliostigma thonningii (Schumach.) Milne-Redh

Fabaceae

8

Rhamnus prinoides L’ Herit

Rhamnaceae

8

Rhus glutinosa A.Rich

Anacardiaceae

8

Schefflera abyssinica (Hochst. ex A. Rich.) Harms

Araliaceae

8

Senna didymobotrya (Fresen.) Irwin and Barneby

Fabaceae

8

Vachellia abyssinica (Hochst. ex. Benth.) Kyal. and Boatwr.

Fabaceae

8

Abutilon figarianum Webb

Malvaceae

4

Albizia anthelmintica (A. Rich.) Brogn

Fabaceae

4

Bridelia micrantha (Hochst.) Baill

Euphorbiaceae

4

Buddleja polystachya Fresen

Loganiaceae

4

Cassipourea malosana (Baker) Alston

Rhizophoraceae

4

Clematis hirsuta Perr. and Guill

Ranunculaceae

4

Croton dichogamus Pax

Euphorbiaceae

4

Delonix regia (Boj.ex Hook.) Raf

Fabaceae

4

Dichrostachys cinerea (L.) Wight and Arn

Fabaceae

4

Dolichos sericeus E. Mey

Fabaceae

4

Eucalyptus saligna Smith

Myrtaceae

4

Ficus ingens (Miq.) Miq

Moraceae

4

Ficus sycomorus L

Moraceae

4

Gladiolus psittacinus Hook. F

Iridaceae

4

Gossypium arboreum L

Malvaceae

4

Hippocratea africana (Willd.) Loes

Celastraceae

4

Indigofera arrecta Hochst. ex A. Rich

Fabaceae

4

Lepidotrichilia volkensii (Giirke) Leroy

Meliaceae

4

Mangifera indica L

Anacardiaceae

4

Myrica salicifolia A. Rich

Myricaceae

4

Oxyanthus speciosus Dc.

Rubiaceae

4

Persea americana Mill

Lauraceae

4

Phoenix reclinata Jacq

Arecaceae

4

Psidium guajava L

Myrtaceae

4

Sapium ellipticum (krauss) pax

Euphorbiaceae

4

Senna petersiana (Bolle) Lock

Fabaceae

4

Sesbania sesban (L.) Merr

Fabaceae

4

Solanecio gigas (Vatke) C. Jeffrey

Asteraceae

4

Solanum giganteum Jacq

Solanaceae

4

Stereospermum kunthianum Cham

Bignoniaceae

4

Syzygium guineense (Willd.) DC

Myrtaceae

4

Urera hypselodendron (A. Rich.) Wedd

Urticaceae

4

Vachellia lahai (Steud. and Hochst. ex. Benth.) Kyal. and Boatwr.

Fabaceae

4

Vangueria apiculata K. Schum

Rubiaceae

4

Vangueria madagascariensis Gmel

Rubiaceae

4

Ximenia americana L

Olacaceae

4

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mequanint, F. et al. (2022). Woody Vegetation Composition and Structure of Church Forests in Southeast of Lake Tana, Northwest Ethiopia. In: Kindu, M., Schneider, T., Wassie, A., Lemenih, M., Teketay, D., Knoke, T. (eds) State of the Art in Ethiopian Church Forests and Restoration Options. Springer, Cham. https://doi.org/10.1007/978-3-030-86626-6_10

Download citation

Publish with us

Policies and ethics