Skip to main content

Pedagogical Approaches and Course Modality Affecting Students’ Self-efficacy and Problem-Solving Attitudes in a TRIZ-Oriented Course

  • Conference paper
  • First Online:
Creative Solutions for a Sustainable Development (TFC 2021)

Abstract

Teaching TRIZ to students who are unfamiliar with it is vital as it assists in spreading a systematic approach to problem-solving in the design and production domain. Typically, the capability to use TRIZ proficiently is measured as a tangible output in the form of exams and project-based activities. However, understanding the impact of using TRIZ on students’ self-efficacy and problem-solving attitudes is a good proxy indicating how likely students will perseverate using this approach to solve problems despite their initial failures and motivations to get creative solutions. Therefore, the purpose of the study is to understand the effect of TRIZ-oriented courses on students’ self-efficacy and problem-solving attitudes towards design activities with respect to the change in the pedagogical approach (traditional and project-based learning) and course modality (in-person and remote). Data was collected at the beginning and end of the course for three different academic years. In general, the results show that project-based learning produces higher self-efficacy in students during a TRIZ course. However, traditional learning improves self-efficacy more than project-based learning. Additionally, in traditional learning, the students’ perception of their problem-solving attitudes at the end of the TRIZ course was higher. Regarding course modality, the remote modality of the TRIZ course produced greater increases in students’ engineering design self-efficacy than the in-person mode. TRIZ educators can benefit from these results and better estimate the opportunities and limitations due to the implementation of innovative pedagogical approaches in TRIZ courses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wilcoxon signed-rank test for non-parametric test for 2 related samples was used.

  2. 2.

    The p-values were obtained based on the parametric and non-parametric tests performed on the independent (delta PBL and delta TL) and related samples (before and after for PBL and TL).

References

  1. Ponton, M.K., Edmister, J.H., Ukeiley, L.S., Seiner, J.M.: Understanding the role of self-efficacy in engineering education. J. Eng. Educ. 90, 247–251 (2001). https://doi.org/10.1002/j.2168-9830.2001.tb00599.x

    Article  Google Scholar 

  2. Huang, N.-T., Chiu, L.-J., Hong, J.-C.: Relationship among students’ problem-solving attitude, perceived value, behavioral attitude, and intention to participate in a science and technology contest. Int. J. Sci. Math. Educ. 14(8), 1419–1435 (2015). https://doi.org/10.1007/s10763-015-9665-y

    Article  Google Scholar 

  3. Linnenbrink, E.A., Pintrich, P.R.: The role of self-efficacy beliefs in student engagement and learning in the classroom. Read. Writ. Q. 19, 119–137 (2003). https://doi.org/10.1080/10573560308223

    Article  Google Scholar 

  4. Loo, C.W., Choy, J.L.F.: Sources of self-efficacy influencing academic performance of engineering students. Am. J. Educ. Res. 1, 86–92 (2013). https://doi.org/10.12691/education-1-3-4

    Article  Google Scholar 

  5. Nicolaidou, M., Philippou, G.: Attitudes towards mathematics, self-efficacy and achievement in problem solving. In: European Research in Mathematics Education III, Pisa, pp. 1–11 (2003)

    Google Scholar 

  6. Becattini, N., Cascini, G.: Improving self-efficacy in solving inventive problems with TRIZ. In: Corazza, G.E., Agnoli, S. (eds.) Multidisciplinary Contributions to the Science of Creative Thinking. CTFC, pp. 195–213. Springer, Singapore (2015). https://doi.org/10.1007/978-981-287-618-8_12

    Chapter  Google Scholar 

  7. Bandura, A.: Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215 (1977)

    Article  Google Scholar 

  8. Bandura, A.: Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall, Hoboken (1986)

    Google Scholar 

  9. Ismail, M., et al.: The relationship between self-efficacy and GPA grade scores of students. Int. J. Appl. Psychol. 2017, 44–47 (2017). https://doi.org/10.5923/j.ijap.20170702.03

    Article  Google Scholar 

  10. Lent, R.W., Brown, S.D., Larkin, K.C.: Self-efficacy in the prediction of academic performance and perceived career options. J. Couns. Psychol. 33(3), 265–269 (1986)

    Article  Google Scholar 

  11. Saraih, U.N., Zin Aris, A.Z., Abdul Mutalib, S., Tunku Ahmad, T.S., Abdullah, S., Harith Amlus, M.: The influence of self-efficacy on entrepreneurial intention among engineering students. MATEC Web Conf. 150, 05051 (2018). https://doi.org/10.1051/matecconf/201815005051

    Article  Google Scholar 

  12. Schaefers, K.G., Epperson, D.L., Nauta, M.M.: Women’s career development: can theoretically derived variables predict persistence in engineering majors? J. Couns. Psychol. 44, 173–183 (1997). https://doi.org/10.1037/0022-0167.44.2.173

    Article  Google Scholar 

  13. Gök, T., Sılay, I.: The effects of problem solving strategies on students’ achievement, attitude and motivation. Am. J. Phys. Educ. 4(1), 7 (2010)

    Google Scholar 

  14. Hsiao, H.C., Chang, J.C.: A quasi-experimental study researching how a problem-solving teaching strategy impacts on learning outcomes for engineering students. World Trans. Eng. Technol. Educ. 2, 391–394 (2003)

    Google Scholar 

  15. Altshuller, G.S.: Creativity as an Exact Science. Gordon and Breach Publishers, New York (1984)

    Book  Google Scholar 

  16. Ilevbare, I.M., Probert, D., Phaal, R.: A review of TRIZ, and its benefits and challenges in practice (2013)

    Google Scholar 

  17. Harlim, J., Belski, I.: Learning TRIZ: impact on confidence when facing problems. Procedia Eng. 131, 95–103 (2015). Elsevier Ltd

    Article  Google Scholar 

  18. Belski, I., Baglin, J., Harlim, J.: Teaching TRIZ at University: a longitudinal study. Int. J. Eng. Educ. 29, 346–354 (2013)

    Google Scholar 

  19. Singh, H., Cascini, G., McComb, C.: Analysing the effect of self-efficacy and influencers on design team performance. Proc. Des. Soc. Des. Conf. 1, 2571–2580 (2020). https://doi.org/10.1017/dsd.2020.64

    Article  Google Scholar 

  20. Belski, I.: TRIZ course enhances thinking and problem solving skills of engineering students. Procedia Eng. 9, 450–460 (2011). Elsevier Ltd

    Article  Google Scholar 

  21. Savery, J.R., Duffy, T.M.: Problem-based learning: an instructional model and its constructivist framework. In: Wilson, B. (ed.) Constructivist Learning Environments: Case Studies in Instructional Design, pp. 135–150. Educational Technology Publications, Englewood Cliffs (1995)

    Google Scholar 

  22. Guo, P., Saab, N., Post, L.S., Admiraal, W.: A review of project-based learning in higher education: student outcomes and measures. Int. J. Educ. Res. 102, 101586 (2020). https://doi.org/10.1016/j.ijer.2020.101586

    Article  Google Scholar 

  23. Dunlap, J.C.: Problem-based learning and self-efficacy: how a capstone course prepares students for a profession. Educ. Technol. Res. Dev. 53, 65–83 (2005). https://doi.org/10.1007/bf02504858

    Article  Google Scholar 

  24. Nolte, H., Berdanier, C., Menold, J., McComb, C.: Assessing engineering design: a comparison of the effect of exams and design practical on first-year students’ design self-efficacy. J. Mech. Des. 143 (2021). https://doi.org/10.1115/1.4048747

  25. Tsai, M.H., Tang, Y.C.: Learning attitudes and problem-solving attitudes for blended problem-based learning. Libr. Hi Tech. 35, 615–628 (2017). https://doi.org/10.1108/LHT-06-2017-0102

    Article  Google Scholar 

  26. Peechapol, C., Na-Songkhla, J., Sujiva, S., Luangsodsai, A.: An exploration of factors influencing self-efficacy in online learning: a systematic review. Int. J. Emerg. Technol. Learn. 13(09), 64 (2018). https://doi.org/10.3991/ijet.v13i09.8351

    Article  Google Scholar 

  27. Birisci, S.: Identifying effectiveness of online group study on mathematical problem solving attitude: a comparative study. Eur. J. Educ. Stud. 3, 223–240 (2017). https://doi.org/10.5281/ZENODO.814239

    Article  Google Scholar 

  28. Cavallucci, D., Khomenko, N.: From TRIZ to OTSM-TRIZ: addressing complexity challenges in inventive design. Int. J. Prod. Dev. 4, 4–21 (2007). https://doi.org/10.1504/IJPD.2007.011530

    Article  Google Scholar 

  29. Cascini, G.: TRIZ-based anticipatory design of future products and processes. J. Integr. Des. Process. Sci. 16, 29–63 (2012). https://doi.org/10.3233/jid-2012-0005

    Article  Google Scholar 

  30. Becattini, N., Cascini, G., Rotini, F.: An OTSM-TRIZ based framework towards the computer-aided identification of cognitive processes in design protocols. In: Gero, J.S., Hanna, S. (eds.) Design Computing and Cognition 2014, pp. 99–117. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14956-1_6

    Chapter  Google Scholar 

  31. Carberry, A.R., Lee, H.S., Ohland, M.W.: Measuring engineering design self-efficacy. J. Eng. Educ. 99, 71–79 (2010). https://doi.org/10.1002/j.2168-9830.2010.tb01043.x

    Article  Google Scholar 

  32. Syarafina, D.N., Jailani, W.R.: The application of problem based learning to improve students’ self-efficacy. In: AIP Conference Proceedings, p. 020024. American Institute of Physics Inc., College Park (2018)

    Google Scholar 

  33. Francescato, D., Porcelli, R., Mebane, M., Cuddetta, M., Klobas, J., Renzi, P.: Evaluation of the efficacy of collaborative learning in face-to-face and computer-supported university contexts. Comput. Hum. Behav. 22, 163–176 (2006)

    Article  Google Scholar 

  34. Singh, H., Cascini, G., McComb, C.: Comparing virtual and face-to-face team collaboration: insights from an agent-based simulation. In: ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME Digital Collection (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niccolo’ Becattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, H., Nolte, H., Becattini, N. (2021). Pedagogical Approaches and Course Modality Affecting Students’ Self-efficacy and Problem-Solving Attitudes in a TRIZ-Oriented Course. In: Borgianni, Y., Brad, S., Cavallucci, D., Livotov, P. (eds) Creative Solutions for a Sustainable Development. TFC 2021. IFIP Advances in Information and Communication Technology, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-030-86614-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86614-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86613-6

  • Online ISBN: 978-3-030-86614-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics