Skip to main content

The Complexity of Bicriteria Tree-Depth

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12867))

Included in the following conference series:

  • 504 Accesses

Abstract

The tree-depth problem can be seen as finding an elimination tree of minimum height for a given input graph G. We introduce a bicriteria generalization in which additionally the width of the elimination tree needs to be bounded by some input integer b. We are interested in the case when G is the line graph of a tree, proving that the problem is \(\mathcal {NP}\)-hard and obtaining a polynomial-time additive 2b-approximation algorithm. This particular class of graphs received significant attention, mainly due to potential applications. These include purely combinatorial applications like searching in tree-like partial orders (which generalizes binary search in sorted data), or practical ones in parallel processing.

Work partially supported under Ministry of Science and Higher Education (Poland) subsidy for Gdańsk University of Technology. Moreover, D. Dereniowski and D. Osula have been partially supported by National Science Centre (Poland) grant number 2018/31/B/ST6/00820.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput. 28(6), 2090–2102 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., et al.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–181 (1998)

    Article  MathSciNet  Google Scholar 

  3. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random partially ordered sets. Theor. Comput. Sci. 321(1), 41–57 (2004)

    Article  MathSciNet  Google Scholar 

  4. Cicalese, F., Jacobs, T., Laber, E.S., Valentim, C.D.: The binary identification problem for weighted trees. Theor. Comput. Sci. 459, 100–112 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cicalese, F., Keszegh, B., Lidický, B., Pálvölgyi, D., Valla, T.: On the tree search problem with non-uniform costs. Theor. Comput. Sci. 647, 22–32 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dereniowski, D.: Edge ranking of weighted trees. Discret. Appl. Math. 154(8), 1198–1209 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dereniowski, D.: Edge ranking and searching in partial orders. Discret. Appl. Math. 156(13), 2493–2500 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dereniowski, D., Kosowski, A., Uznański, P., Zou, M.: Approximation strategies for generalized binary search in weighted trees. In: ICALP 2017, pp. 84:1–84:14 (2017)

    Google Scholar 

  9. Dereniowski, D., Nadolski, A.: Vertex rankings of chordal graphs and weighted trees. Inf. Process. Lett. 98(3), 96–100 (2006)

    Article  MathSciNet  Google Scholar 

  10. Emamjomeh-Zadeh, E., Kempe, D.: A general framework for robust interactive learning. In: NIPS 2017, pp. 7082–7091 (2017)

    Google Scholar 

  11. Giannopoulou, A.C., Hunter, P., Thilikos, D.M.: LIFO-search: a min-max theorem and a searching game for cycle-rank and tree-depth. Discret. Appl. Math. 160(15), 2089–2097 (2012)

    Article  MathSciNet  Google Scholar 

  12. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal node ranking of trees. Inf. Process. Lett. 28(5), 225–229 (1988)

    Article  MathSciNet  Google Scholar 

  13. Iyer, A.V., Ratliff, H.D., Vijayan, G.: On an edge ranking problem of trees and graphs. Discret. Appl. Math. 30(1), 43–52 (1991). https://doi.org/10.1016/0166-218X(91)90012-L

    Article  MathSciNet  MATH  Google Scholar 

  14. Laber, E.S., Milidiú, R.L., Pessoa, A.A.: On binary searching with nonuniform costs. SIAM J. Comput. 31(4), 1022–1047 (2002)

    Article  MathSciNet  Google Scholar 

  15. Lam, T.W., Yue, F.L.: Edge ranking of graphs is hard. Discret. Appl. Math. 85(1), 71–86 (1998)

    Article  MathSciNet  Google Scholar 

  16. Lam, T.W., Yue, F.L.: Optimal edge ranking of trees in linear time. Algorithmica 30(1), 12–33 (2001)

    Article  MathSciNet  Google Scholar 

  17. Liu, J.W.: The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11(1), 134–172 (1990)

    Article  MathSciNet  Google Scholar 

  18. Liu, J.: Equivalent sparse matrix reorderings by elimination tree rotations. SIAM J. Sci. Stat. Comput. 9(3), 424–444 (1988)

    Article  MathSciNet  Google Scholar 

  19. Makino, K., Uno, Y., Ibaraki, T.: On minimum edge ranking spanning trees. J. Algorithms 38(2), 411–437 (2001)

    Article  MathSciNet  Google Scholar 

  20. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time. In: SODA 2008, pp. 1096–1105 (2008)

    Google Scholar 

  21. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

    Article  MathSciNet  Google Scholar 

  22. Onak, K., Parys, P.: Generalization of binary search: searching in trees and forest-like partial orders. In: FOCS 2006, pp. 379–388 (2006)

    Google Scholar 

  23. Schäffer, A.A.: Optimal node ranking of trees in linear time. Inf. Process. Lett. 33(2), 91–96 (1989)

    Article  MathSciNet  Google Scholar 

  24. de la Torre, P., Greenlaw, R., Schäffer, A.A.: Optimal edge ranking of trees in polynomial time. Algorithmica 13(6), 592–618 (1995)

    Article  MathSciNet  Google Scholar 

  25. Zhou, X., Kashem, M.A., Nishizeki, T.: Generalized edge-rankings of trees (extended abstract). In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS, vol. 1197, pp. 390–404. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62559-3_31

    Chapter  Google Scholar 

  26. Zhou, X., Nishizeki, T.: An efficient algorithm for edge-ranking trees. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 118–129. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049402

    Chapter  Google Scholar 

  27. Zhou, X., Nishizeki, T.: Finding optimal edge-rankings of trees. In: SODA 1995, pp. 122–131

    Google Scholar 

  28. Zwaan, R.: Vertex ranking with capacity. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 767–778. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11266-9_64

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Dereniowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borowiecki, P., Dereniowski, D., Osula, D. (2021). The Complexity of Bicriteria Tree-Depth. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics