Skip to main content

Bioinformatic and MD Analysis of N501Y SARS-CoV-2 (UK) Variant

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 616)

Abstract

COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. Although a number of new vaccines are available to combat this threat, a high prevalence of novel mutant viral variants is observed in all world regions affected by this infection. Among viral proteomes, the highly glycosylated spike protein (Sprot) of SARS-CoV-2 has received the most attention due to its interaction with the host receptor ACE2. To understand the mechanisms of viral variant infectivity and the interaction of the RBD of Sprot with the host ACE2, we performed a large-scale mutagenesis study of the RBD-ACE2 interface by performing 1780 point mutations in silico and identifying the ambiguous stabilisation of the interface by the most common point mutations described in the literature. Furthermore, we pinpointed the N501Y mutation at the RBD of Sprot as profoundly affecting complex formation and confirmed greater stability of the N501Y mutant compared to wild-type (WT) viral S protein by molecular dynamics experiments. These findings could be important for the study and design of upcoming vaccines, PPI inhibitor molecules, and therapeutic antibodies or antibody mimics.

Keywords

  • COVID-19
  • SARS-CoV-2
  • Point mutation
  • SARS-CoV-2 variants
  • Protein-protein interactions
  • Drug design

Supported by the Slovenian Ministry of Science and Education infrastructure project grant HPC-RIVR, by the Slovenian Research Agency (ARRS) programme and project grants P2-0046 and J1-2471, and by Slovenian Ministry of Education, Science and Sports programme grant OP20.04342.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

MD:

Molecular Dynamics

PDB:

Protein Data Bank

PPI:

Protein-Protein Interactions

RBD:

Receptor Binding Domain

WHO:

World Health Organisation

References

  1. Amanat, F., Krammer, F.: SARS-CoV-2 vaccines: status report. Immunity 52(4), 583–589 (2020)

    CrossRef  Google Scholar 

  2. Banu, S., et al.: A distinct phylogenetic cluster of Indian severe acute respiratory syndrome coronavirus 2 isolates. Open Forum Infect. Dis. 7(11), ofaa434 (2020)

    Google Scholar 

  3. Bracken, C.J., et al.: Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nat. Chem. Biol. 17(1), 113–121 (2021)

    CrossRef  Google Scholar 

  4. Brooks, B.R., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    CrossRef  Google Scholar 

  5. Buß, O., Rudat, J., Ochsenreither, K.: FoldX as protein engineering tool: better than random based approaches? Comput. Struct. Biotechnol. J. 16, 25–33 (2018)

    CrossRef  Google Scholar 

  6. Chatterjee, P.: Covid-19: India authorises Sputnik V vaccine as cases soar to more than 180 000 a day BMJ 373, 978 (2021)

    Google Scholar 

  7. Chen, W.H., Strych, U., Hotez, P.J., Bottazzi, M.E.: The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7(2), 61–64 (2020)

    CrossRef  Google Scholar 

  8. Cherian, S., et al.: Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. BioRxiv (2021)

    Google Scholar 

  9. De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J.: SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14(8), 523–534 (2016)

    CrossRef  Google Scholar 

  10. Faria, N.R., et al.: Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological (2021)

    Google Scholar 

  11. Gu, H., et al.: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369(6511), 1603–1607 (2020)

    Google Scholar 

  12. Hilgenfeld, R., Peiris, M.: From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antivir. Res. 100(1), 286–295 (2013)

    CrossRef  Google Scholar 

  13. Hopkins, J.: Mortality analyses. https://coronavirus.jhu.edu/data/mortality

  14. Hui, D.S., et al.: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264–266 (2020)

    Google Scholar 

  15. Jo, S., Kim, T., Iyer, V.G., Im, W.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008)

    CrossRef  Google Scholar 

  16. Kahn, J.S., McIntosh, K.: History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 24(11), S223–S227 (2005)

    CrossRef  Google Scholar 

  17. Khan, A., et al.: Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: an insight from structural data. J. Cell. Physiol. (2021)

    Google Scholar 

  18. Krieger, E., Dunbrack, R.L., Hooft, R.W., Krieger, B.: Assignment of protonation states in proteins and ligands: combining pK a prediction with hydrogen bonding network optimization. In: Baron, R. (eds.) Computational Drug Discovery and Design. Methods in Molecular Biology (Methods and Protocols), vol. 819, pp. 405–421. Springer, New York(2012). https://doi.org/10.1007/978-1-61779-465-0_25

  19. Krieger, E., Nielsen, J.E., Spronk, C.A., Vriend, G.: Fast empirical pKa prediction by Ewald summation. J. Mol. Graph. Model. 25(4), 481–486 (2006)

    CrossRef  Google Scholar 

  20. Krieger, E., Vriend, G.: New ways to boost molecular dynamics simulations. J. Comput. Chem. 36(13), 996–1007 (2015)

    CrossRef  Google Scholar 

  21. Lan, J., et al.: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807), 215–220 (2020)

    Google Scholar 

  22. Leung, K., Shum, M.H., Leung, G.M., Lam, T.T., Wu, J.T.: Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 26(1), 2002106 (2021)

    CrossRef  Google Scholar 

  23. Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., Liu, J.: Updated approaches against SARS-CoV-2. Antimicrob. Agent. Chemother. 64(6), e00483 (2020)

    CrossRef  Google Scholar 

  24. Q, Li., et al.: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182(5), 1284–1294 (2020)

    CrossRef  Google Scholar 

  25. Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New Engl. J. Med. 382, 1199-1207 (2020)

    Google Scholar 

  26. Lu, G., Wang, Q., Gao, G.F.: Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 23(8), 468–478 (2015)

    CrossRef  Google Scholar 

  27. Lu, R., et al.: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224), 565–574 (2020)

    CrossRef  Google Scholar 

  28. McKee, D.L., Sternberg, A., Stange, U., Laufer, S., Naujokat, C.: Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res. 157, 104859 (2020)

    Google Scholar 

  29. Moelling, K.: Within-host and between-host evolution in SARS-CoV-2–new variant’s source. Viruses 13(5), 751 (2021)

    CrossRef  Google Scholar 

  30. Naqvi, A.A.T., et al.: Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1866(10), 165878 (2020)

    Google Scholar 

  31. O’Driscoll, M., et al.: Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590(7844), 140–145 (2021)

    CrossRef  Google Scholar 

  32. Shang, J., et al.: Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807), 221–224 (2020)

    Google Scholar 

  33. Tegally, H., et al.: Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. MedRxiv (2020)

    Google Scholar 

  34. Teng, S., Sobitan, A., Rhoades, R., Liu, D., Tang, Q.: Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Brief. Bioinform. 22(2), 1239–1253 (2021)

    CrossRef  Google Scholar 

  35. Volz, E., et al.: Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. MedRxiv 2020, 12 (2021)

    Google Scholar 

  36. Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F.: A novel coronavirus outbreak of global health concern. Lancet 395(10223), 470–473 (2020)

    CrossRef  Google Scholar 

  37. Wang, W.B., Liang, Y., Jin, Y.Q., Zhang, J., Su, J.G., Li, Q.M.: E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies. bioRxiv (2021)

    Google Scholar 

  38. Wibmer, C.K., et al.: SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27(4), 622–625 (2021)

    Google Scholar 

  39. Wu, F., et al.: A new coronavirus associated with human respiratory disease in china. Nature 579(7798), 265–269 (2020)

    CrossRef  Google Scholar 

  40. Yadav, P., et al.: Neutralization of variant under investigation B. 1.617 with sera of BBV152 vaccinees. bioRxiv (2021)

    Google Scholar 

  41. Yadav, P.D., et al.: SARS CoV-2 variant B. 1.617. 1 is highly pathogenic in hamsters than B. 1 variant. bioRxiv (2021)

    Google Scholar 

  42. Zhang, Y., et al.: Mutagenesis study to disrupt electrostatic interactions on the twofold symmetry interface of Escherichia coli bacterioferritin. J. Biochem. 158(6), 505–512 (2015)

    Google Scholar 

Download references

Acknowledgements

We thank Javier Delgado Blanco and Luis Serrano Pubul from FoldX for their support. Heartfelt thanks to Črtomir Podlipnik, a friend and a scientific colleague.

Thank You, participants in the COVID.SI community ( www.co-vid.si and www.sidock.si ) for supporting our work. Thank You All!

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marko Jukić or Urban Bren .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest. The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jukić, M., Kralj, S., Nikitina, N., Bren, U. (2021). Bioinformatic and MD Analysis of N501Y SARS-CoV-2 (UK) Variant. In: Byrski, A., Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds) Computer Science Protecting Human Society Against Epidemics. ANTICOVID 2021. IFIP Advances in Information and Communication Technology, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-030-86582-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86582-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86581-8

  • Online ISBN: 978-3-030-86582-5

  • eBook Packages: Computer ScienceComputer Science (R0)