Abstract
COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. Although a number of new vaccines are available to combat this threat, a high prevalence of novel mutant viral variants is observed in all world regions affected by this infection. Among viral proteomes, the highly glycosylated spike protein (Sprot) of SARS-CoV-2 has received the most attention due to its interaction with the host receptor ACE2. To understand the mechanisms of viral variant infectivity and the interaction of the RBD of Sprot with the host ACE2, we performed a large-scale mutagenesis study of the RBD-ACE2 interface by performing 1780 point mutations in silico and identifying the ambiguous stabilisation of the interface by the most common point mutations described in the literature. Furthermore, we pinpointed the N501Y mutation at the RBD of Sprot as profoundly affecting complex formation and confirmed greater stability of the N501Y mutant compared to wild-type (WT) viral S protein by molecular dynamics experiments. These findings could be important for the study and design of upcoming vaccines, PPI inhibitor molecules, and therapeutic antibodies or antibody mimics.
Keywords
- COVID-19
- SARS-CoV-2
- Point mutation
- SARS-CoV-2 variants
- Protein-protein interactions
- Drug design
Supported by the Slovenian Ministry of Science and Education infrastructure project grant HPC-RIVR, by the Slovenian Research Agency (ARRS) programme and project grants P2-0046 and J1-2471, and by Slovenian Ministry of Education, Science and Sports programme grant OP20.04342.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- ACE2:
-
Angiotensin-converting enzyme 2
- MD:
-
Molecular Dynamics
- PDB:
-
Protein Data Bank
- PPI:
-
Protein-Protein Interactions
- RBD:
-
Receptor Binding Domain
- WHO:
-
World Health Organisation
References
Amanat, F., Krammer, F.: SARS-CoV-2 vaccines: status report. Immunity 52(4), 583–589 (2020)
Banu, S., et al.: A distinct phylogenetic cluster of Indian severe acute respiratory syndrome coronavirus 2 isolates. Open Forum Infect. Dis. 7(11), ofaa434 (2020)
Bracken, C.J., et al.: Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nat. Chem. Biol. 17(1), 113–121 (2021)
Brooks, B.R., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)
Buß, O., Rudat, J., Ochsenreither, K.: FoldX as protein engineering tool: better than random based approaches? Comput. Struct. Biotechnol. J. 16, 25–33 (2018)
Chatterjee, P.: Covid-19: India authorises Sputnik V vaccine as cases soar to more than 180 000 a day BMJ 373, 978 (2021)
Chen, W.H., Strych, U., Hotez, P.J., Bottazzi, M.E.: The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7(2), 61–64 (2020)
Cherian, S., et al.: Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. BioRxiv (2021)
De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J.: SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14(8), 523–534 (2016)
Faria, N.R., et al.: Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological (2021)
Gu, H., et al.: Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369(6511), 1603–1607 (2020)
Hilgenfeld, R., Peiris, M.: From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antivir. Res. 100(1), 286–295 (2013)
Hopkins, J.: Mortality analyses. https://coronavirus.jhu.edu/data/mortality
Hui, D.S., et al.: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264–266 (2020)
Jo, S., Kim, T., Iyer, V.G., Im, W.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008)
Kahn, J.S., McIntosh, K.: History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 24(11), S223–S227 (2005)
Khan, A., et al.: Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: an insight from structural data. J. Cell. Physiol. (2021)
Krieger, E., Dunbrack, R.L., Hooft, R.W., Krieger, B.: Assignment of protonation states in proteins and ligands: combining pK a prediction with hydrogen bonding network optimization. In: Baron, R. (eds.) Computational Drug Discovery and Design. Methods in Molecular Biology (Methods and Protocols), vol. 819, pp. 405–421. Springer, New York(2012). https://doi.org/10.1007/978-1-61779-465-0_25
Krieger, E., Nielsen, J.E., Spronk, C.A., Vriend, G.: Fast empirical pKa prediction by Ewald summation. J. Mol. Graph. Model. 25(4), 481–486 (2006)
Krieger, E., Vriend, G.: New ways to boost molecular dynamics simulations. J. Comput. Chem. 36(13), 996–1007 (2015)
Lan, J., et al.: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807), 215–220 (2020)
Leung, K., Shum, M.H., Leung, G.M., Lam, T.T., Wu, J.T.: Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 26(1), 2002106 (2021)
Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., Liu, J.: Updated approaches against SARS-CoV-2. Antimicrob. Agent. Chemother. 64(6), e00483 (2020)
Q, Li., et al.: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182(5), 1284–1294 (2020)
Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New Engl. J. Med. 382, 1199-1207 (2020)
Lu, G., Wang, Q., Gao, G.F.: Bat-to-human: spike features determining ‘host jump’of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 23(8), 468–478 (2015)
Lu, R., et al.: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224), 565–574 (2020)
McKee, D.L., Sternberg, A., Stange, U., Laufer, S., Naujokat, C.: Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res. 157, 104859 (2020)
Moelling, K.: Within-host and between-host evolution in SARS-CoV-2–new variant’s source. Viruses 13(5), 751 (2021)
Naqvi, A.A.T., et al.: Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1866(10), 165878 (2020)
O’Driscoll, M., et al.: Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590(7844), 140–145 (2021)
Shang, J., et al.: Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807), 221–224 (2020)
Tegally, H., et al.: Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. MedRxiv (2020)
Teng, S., Sobitan, A., Rhoades, R., Liu, D., Tang, Q.: Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Brief. Bioinform. 22(2), 1239–1253 (2021)
Volz, E., et al.: Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. MedRxiv 2020, 12 (2021)
Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F.: A novel coronavirus outbreak of global health concern. Lancet 395(10223), 470–473 (2020)
Wang, W.B., Liang, Y., Jin, Y.Q., Zhang, J., Su, J.G., Li, Q.M.: E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies. bioRxiv (2021)
Wibmer, C.K., et al.: SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27(4), 622–625 (2021)
Wu, F., et al.: A new coronavirus associated with human respiratory disease in china. Nature 579(7798), 265–269 (2020)
Yadav, P., et al.: Neutralization of variant under investigation B. 1.617 with sera of BBV152 vaccinees. bioRxiv (2021)
Yadav, P.D., et al.: SARS CoV-2 variant B. 1.617. 1 is highly pathogenic in hamsters than B. 1 variant. bioRxiv (2021)
Zhang, Y., et al.: Mutagenesis study to disrupt electrostatic interactions on the twofold symmetry interface of Escherichia coli bacterioferritin. J. Biochem. 158(6), 505–512 (2015)
Acknowledgements
We thank Javier Delgado Blanco and Luis Serrano Pubul from FoldX for their support. Heartfelt thanks to Črtomir Podlipnik, a friend and a scientific colleague.
Thank You, participants in the COVID.SI community ( www.co-vid.si and www.sidock.si ) for supporting our work. Thank You All!
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Conflicts of Interest. The authors declare no conflict of interest.
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Jukić, M., Kralj, S., Nikitina, N., Bren, U. (2021). Bioinformatic and MD Analysis of N501Y SARS-CoV-2 (UK) Variant. In: Byrski, A., Czachórski, T., Gelenbe, E., Grochla, K., Murayama, Y. (eds) Computer Science Protecting Human Society Against Epidemics. ANTICOVID 2021. IFIP Advances in Information and Communication Technology, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-030-86582-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-86582-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86581-8
Online ISBN: 978-3-030-86582-5
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.ifip.org/