Skip to main content

Invertible Manifold Learning for Dimension Reduction

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information. In the context of manifold learning, we define that the representation after information-lossless DR preserves the topological and geometric properties of data manifolds formally, and propose a novel two-stage DR method, called invertible manifold learning (inv-ML) to bridge the gap between theoretical information-lossless and practical DR. The first stage includes a homeomorphic sparse coordinate transformation to learn low-dimensional representations without destroying topology and a local isometry constraint to preserve local geometry. In the second stage, a linear compression is implemented for the trade-off between the target dimension and the incurred information loss in excessive DR scenarios. Experiments are conducted on seven datasets with a neural network implementation of inv-ML, called i-ML-Enc. Empirically, i-ML-Enc achieves invertible DR in comparison with typical existing methods as well as reveals the characteristics of the learned manifolds. Through latent space interpolation on real-world datasets, we find that the reliability of tangent space approximated by the local neighborhood is the key to the success of manifold-based DR algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrmann, J., Grathwohl, W., Chen, R.T.Q., Duvenaud, D., Jacobsen, J.: Invertible residual networks. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  2. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718 (2018)

  3. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  4. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  6. Duque, A.F., Morin, S., Wolf, G., Moon, K.R.: Extendable and invertible manifold learning with geometry regularized autoencoders. arXiv preprint arXiv:2007.07142 (2020)

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  8. Hull, J.: Database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16, 550–554 (1994)

    Article  Google Scholar 

  9. Jacobsen, J., Smeulders, A.W.M., Oyallon, E.: i-revnet: deep invertible networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  10. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz maps into a hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  Google Scholar 

  11. Kaski, S., Venna, J.: Visualizing gene interaction graphs with local multidimensional scaling. In: European Symposium on Artificial Neural Networks, pp. 557–562 (2006)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Li, S.Z., Zhang, Z., Wu, L.: Markov-lipschitz deep learning. arXiv preprint arXiv:2006.08256 (2020)

  16. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  17. McQueen, J., Meila, M., Joncas, D.: Nearly isometric embedding by relaxation. In: Proceedings of the 29th Neural Information Processing Systems (NIPS), pp. 2631–2639 (2016)

    Google Scholar 

  18. Mei, J.: Introduction to Manifold and Geometry. Beijing Science Press, Beijing (2013)

    Google Scholar 

  19. Moor, M., Horn, M., Rieck, B., Borgwardt, K.: Topological autoencoders. In: International Conference on Machine Learning (ICML) (2020)

    Google Scholar 

  20. Nash, J.: The imbedding problem for riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  21. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical Report, Columbia University (1996). https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

  22. Nguyen, T.-G.L., Ardizzone, L., Köthe, U.: Training Invertible Neural Networks as Autoencoders. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 442–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_31

    Chapter  Google Scholar 

  23. Pedregosa, F., et al.: Édouard Duchesnay: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Google Scholar 

  25. Seshadri, H., Verma, K.: The embedding theorems of Whitney and Nash. Resonance 21(9), 815–826 (2016). https://doi.org/10.1007/s12045-016-0387-4

    Article  Google Scholar 

  26. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  27. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  28. Zhang, Z., Wang, J.: Mlle: modified locally linear embedding using multiple weights. In: Advances in Neural Information Processing systems, pp. 1593–1600 (2007)

    Google Scholar 

  29. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was done during the internship of Siyuan Li and Haitao Lin at Westlake University. We thank Di Wu for helpful insights on hyperparameters tuning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Z. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Lin, H., Zang, Z., Wu, L., Xia, J., Li, S.Z. (2021). Invertible Manifold Learning for Dimension Reduction. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86523-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86522-1

  • Online ISBN: 978-3-030-86523-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics