Ahn, D.: The stages of event extraction. In: Proceedings of the Workshop on Annotating and Reasoning about Time and Events (2006)
Google Scholar
Anaby-Tavor, A., et al.: Do not have enough data? deep learning to the rescue! In: AAAI (2020)
Google Scholar
Araki, J., Mitamura, T.: Open-domain event detection using distant supervision. In: COLING (2018)
Google Scholar
Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., Choi, Y.: Comet: commonsense transformers for automatic knowledge graph construction. In: ACL (2019)
Google Scholar
Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-pooling convolutional neural networks. In: ACL-IJCNLP (2015)
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
Google Scholar
Ferguson, J., Lockard, C., Weld, D.S., Hajishirzi, H.: Semi-supervised event extraction with paraphrase clusters. In: NAACL (2018)
Google Scholar
Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2019)
Google Scholar
Huang, L., et al.: Liberal event extraction and event schema induction. In: ACL (2016)
Google Scholar
Huang, R., Riloff, E.: Bootstrapped training of event extraction classifiers. In: EACL (2012)
Google Scholar
Ji, H., Grishman, R.: Refining event extraction through cross-document inference. In: ACL (2008)
Google Scholar
Keith, K., Handler, A., Pinkham, M., Magliozzi, C., McDuffie, J., O’Connor, B.: Identifying civilians killed by police with distantly supervised entity-event extraction. In: EMNLP (2017)
Google Scholar
Kumar, V., Choudhary, A., Cho, E.: Data augmentation using pre-trained transformer models. arXiv preprint arXiv:2003.02245 (2020)
Lai, V.D., Dernoncourt, F., Nguyen, T.H.: Exploiting the matching information in the support set for few shot event classification. In: Proceedings of the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (2020)
Google Scholar
Lai, V.D., Nguyen, T.N., Nguyen, T.H.: Event detection: gate diversity and syntactic importance scores for graph convolution neural networks. In: EMNLP (2020)
Google Scholar
Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with global features. In: ACL (2013)
Google Scholar
Liao, S., Grishman, R.: Filtered ranking for bootstrapping in event extraction. In: COLING (2010)
Google Scholar
Liao, S., Grishman, R.: Using document level cross-event inference to improve event extraction. In: ACL (2010)
Google Scholar
Madaan, A., Rajagopal, D., Yang, Y., Ravichander, A., Hovy, E., Prabhumoye, S.: Eigen: event influence generation using pre-trained language models. arXiv preprint arXiv:2010.11764 (2020)
McClosky, D., Surdeanu, M., Manning, C.: Event extraction as dependency parsing. In: BioNLP Shared Task Workshop (2011)
Google Scholar
Miwa, M., Thompson, P., Korkontzelos, I., Ananiadou, S.: Comparable study of event extraction in newswire and biomedical domains. In: COLING (2014)
Google Scholar
Naik, A., Rosé, C.: Towards open domain event trigger identification using adversarial domain adaptation. In: ACL (2020)
Google Scholar
Nguyen, M., Nguyen, T.H.: Who is killed by police: introducing supervised attention for hierarchical lstms. In: COLING (2018)
Google Scholar
Nguyen, T.H., Cho, K., Grishman, R.: Joint event extraction via recurrent neural networks. In: NAACL (2016a)
Google Scholar
Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convolutional neural networks. In: ACL (2015b)
Google Scholar
Nguyen, T.H., Grishman, R.: Graph convolutional networks with argument-aware pooling for event detection. In: AAAI (2018)
Google Scholar
Nguyen, T.M., Nguyen, T.H.: One for all: neural joint modeling of entities and events. In: AAAI (2019)
Google Scholar
Papanikolaou, Y., Pierleoni, A.: Dare: data augmented relation extraction with gpt-2. In: SciNLP workshop at AKBC (2020)
Google Scholar
Peng, B., Zhu, C., Zeng, M., Gao, J.: Data augmentation for spoken language understanding via pretrained models. arXiv preprint arXiv:2004.13952 (2020)
Peyre, G., Cuturi, M.: Computational optimal transport: with applications to data science. In: Foundations and Trends in Machine Learning (2019)
Google Scholar
Pustejovsky, J., et al.: The timebank corpus. In: Corpus linguistics (2003)
Google Scholar
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
Google Scholar
Sims, M., Park, J.H., Bamman, D.: Literary event detection. In: ACL (2019)
Google Scholar
Trong, H.M.D., Le, D.T., Veyseh, A.P.B., Nguyen, T., Nguyen, T.H.: Introducing a new dataset for event detection in cybersecurity texts. In: EMNLP (2020)
Google Scholar
Walker, C., Strassel, S., Medero, J., Maeda, K.: Ace 2005 multilingual training corpus. In: LDC, Philadelphia (2006)
Google Scholar
Wang, X., Han, X., Liu, Z., Sun, M., Li, P.: Adversarial training for weakly supervised event detection. In: NAACL-HLT (2019)
Google Scholar
Yang, B., Mitchell, T.M.: Joint extraction of events and entities within a document context. In: NAACL-HLT (2016)
Google Scholar
Yang, S., Feng, D., Qiao, L., Kan, Z., Li, D.: Exploring pre-trained language models for event extraction and generation. In: ACL (2019)
Google Scholar
Yang, Y., et al.: Generative data augmentation for commonsense reasoning. In: Findings of EMNLP 2020 (2020)
Google Scholar
Yuan, Q., et al.: Open-schema event profiling for massive news corpora. In: CIKM (2018)
Google Scholar
Zeng, Y., et al.: Scale up event extraction learning via automatic training data generation. In: AAAI (2017)
Google Scholar
Zhang, D., Li, T., Zhang, H., Yin, B.: On data augmentation for extreme multi-label classification. arXiv preprint arXiv:2009.10778 (2020)
Zhang, J., Qin, Y., Zhang, Y., Liu, M., Ji, D.: Extracting entities and events as a single task using a transition-based neural model. In: IJCAI (2019)
Google Scholar
Zhang, Y., et al.: A question answering-based framework for one-step event argument extraction. IEEE Access 8, 65420–65431 (2020)
CrossRef
Google Scholar