Skip to main content

ATOM: Robustifying Out-of-Distribution Detection Using Outlier Mining

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12977))

Abstract

Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep learning models in an open-world setting. However, existing OOD detection solutions can be brittle in the open world, facing various types of adversarial OOD inputs. While methods leveraging auxiliary OOD data have emerged, our analysis on illuminative examples reveals a key insight that the majority of auxiliary OOD examples may not meaningfully improve or even hurt the decision boundary of the OOD detector, which is also observed in empirical results on real data. In this paper, we provide a theoretically motivated method, Adversarial Training with informative Outlier Mining (ATOM), which improves the robustness of OOD detection. We show that, by mining informative auxiliary OOD data, one can significantly improve OOD detection performance, and somewhat surprisingly, generalize to unseen adversarial attacks. ATOM achieves state-of-the-art performance under a broad family of classic and adversarial OOD evaluation tasks. For example, on the CIFAR-10 in-distribution dataset, ATOM reduces the FPR (at TPR 95%) by up to 57.99% under adversarial OOD inputs, surpassing the previous best baseline by a large margin.

The full version of this paper with a detailed appendix can be found at https://arxiv.org/pdf/2006.15207.pdf.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Adversarial OOD examples are constructed w.r.t the OOD detector, which is different from the standard notion of adversarial examples (constructed w.r.t the classification model).

  2. 2.

    Since the inference stage can be fully parallel, outlier mining can be applied with relatively low overhead.

References

  1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: ICML, pp. 274–283. PMLR (2018)

    Google Scholar 

  2. Bendale, A., Boult, T.: Towards open world recognition. In: CVPR. pp. 1893–1902 (2015)

    Google Scholar 

  3. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Discriminative out-of-distribution detection for semantic segmentation. arXiv preprint arXiv:1808.07703 (2018)

  4. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_25

    Chapter  Google Scholar 

  5. Bitterwolf, J., Meinke, A., Hein, M.: Certifiably adversarially robust detection of out-of-distribution data. In: NeurIPS 33 (2020)

    Google Scholar 

  6. Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.S.: Unlabeled data improves adversarial robustness. In: NeurIPS, pp. 11190–11201 (2019)

    Google Scholar 

  7. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imagenet as an alternative to the cifar datasets. arXiv preprint arXiv:1707.08819 (2017)

  8. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR (2014)

    Google Scholar 

  9. Cui, Y., Zhou, F., Lin, Y., Belongie, S.: Fine-grained categorization and dataset bootstrapping using deep metric learning with humans in the loop. In: CVPR, pp. 1153–1162 (2016)

    Google Scholar 

  10. Duan, Y., Chen, L., Lu, J., Zhou, J.: Deep embedding learning with discriminative sampling policy. In: CVPR, pp. 4964–4973 (2019)

    Google Scholar 

  11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)

    Article  Google Scholar 

  12. Filos, A., Tigkas, P., McAllister, R., Rhinehart, N., Levine, S., Gal, Y.: Can autonomous vehicles identify, recover from, and adapt to distribution shifts? In: ICML, pp. 3145–3153. PMLR (2020)

    Google Scholar 

  13. Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: ICCV, pp. 1134–1142 (2015)

    Google Scholar 

  14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. ICLR (2015)

    Google Scholar 

  15. Harwood, B., Kumar BG, V., Carneiro, G., Reid, I., Drummond, T.: Smart mining for deep metric learning. In: ICCV, pp. 2821–2829 (2017)

    Google Scholar 

  16. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: CVPR, pp. 41–50 (2019)

    Google Scholar 

  17. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: ICLR (2019)

    Google Scholar 

  18. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)

    Google Scholar 

  19. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: ICLR (2019)

    Google Scholar 

  20. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: detecting out-of-distribution image without learning from out-of-distribution data. In: CVPR (2020)

    Google Scholar 

  21. Huang, R., Li, Y.: Towards scaling out-of-distribution detection for large semantic space. In: CVPR (2021)

    Google Scholar 

  22. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  23. Laidlaw, C., Feizi, S.: Functional adversarial attacks. In: NeurIPS, pp. 10408–10418 (2019)

    Google Scholar 

  24. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS, pp. 6402–6413 (2017)

    Google Scholar 

  25. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: ICLR (2018)

    Google Scholar 

  26. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS, pp. 7167–7177 (2018)

    Google Scholar 

  27. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: ICLR (2018)

    Google Scholar 

  28. Lin, Z., Dutta, S., Li, Y.: Mood: Multi-level out-of-distribution detection. In: CVPR (2021)

    Google Scholar 

  29. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: NeurIPS (2020)

    Google Scholar 

  30. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)

    Google Scholar 

  31. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: NeurIPS, pp. 7047–7058 (2018)

    Google Scholar 

  32. Meinke, A., Hein, M.: Towards neural networks that provably know when they don’t know. In: ICLR (2020)

    Google Scholar 

  33. Mohseni, S., Pitale, M., Yadawa, J., Wang, Z.: Self-supervised learning for generalizable out-of-distribution detection. AAAI 34, 5216–5223 (2020)

    Article  Google Scholar 

  34. Najafi, A., Maeda, S.I., Koyama, M., Miyato, T.: Robustness to adversarial perturbations in learning from incomplete data. In: NeurIPS, pp. 5541–5551 (2019)

    Google Scholar 

  35. Papadopoulos, A., Rajati, M.R., Shaikh, N., Wang, J.: Outlier exposure with confidence control for out-of-distribution detection. Neurocomputing 441, 138–150 (2021)

    Article  Google Scholar 

  36. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  37. Sehwag, V., Bhagoji, A.N., Song, L., Sitawarin, C., Cullina, D., Chiang, M., Mittal, P.: Analyzing the robustness of open-world machine learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 105–116 (2019)

    Google Scholar 

  38. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)

    Google Scholar 

  39. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV, pp. 118–126 (2015)

    Google Scholar 

  40. Smirnov, E., Melnikov, A., Oleinik, A., Ivanova, E., Kalinovskiy, I., Luckyanets, E.: Hard example mining with auxiliary embeddings. In: CVPR Workshops, pp. 37–46 (2018)

    Google Scholar 

  41. Subramanya, A., Srinivas, S., Babu, R.V.: Confidence estimation in deep neural networks via density modelling. arXiv preprint arXiv:1707.07013 (2017)

  42. Suh, Y., Han, B., Kim, W., Lee, K.M.: Stochastic class-based hard example mining for deep metric learning. In: CVPR, pp. 7251–7259 (2019)

    Google Scholar 

  43. Sung, K.K.: Learning and example selection for object and pattern detection. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995)

    Google Scholar 

  44. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  45. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  46. Uesato, J., Alayrac, J.B., Huang, P.S., Stanforth, R., Fawzi, A., Kohli, P.: Are labels required for improving adversarial robustness? NeurIPS (2019)

    Google Scholar 

  47. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos. In: ICCV, pp. 2794–2802 (2015)

    Google Scholar 

  48. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: ICCV, pp. 2840–2848 (2017)

    Google Scholar 

  49. Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: Turkergaze: Crowdsourcing saliency with webcam based eye tracking. arXiv preprint arXiv:1504.06755 (2015)

  50. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  51. Yuan, Y., Yang, K., Zhang, C.: Hard-aware deeply cascaded embedding. In: ICCV, pp. 814–823 (2017)

    Google Scholar 

  52. Zhai, R., et al.: Adversarially robust generalization just requires more unlabeled data. arXiv preprint arXiv:1906.00555 (2019)

  53. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially supported by Air Force Grant FA9550-18-1-0166, the National Science Foundation (NSF) Grants CCF-FMitF-1836978, IIS-2008559, SaTC-Frontiers-1804648 and CCF-1652140, and ARO grant number W911NF-17-1-0405. Jiefeng Chen and Somesh Jha are partially supported by the DARPA-GARD problem under agreement number 885000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Li, Y., Wu, X., Liang, Y., Jha, S. (2021). ATOM: Robustifying Out-of-Distribution Detection Using Outlier Mining. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12977. Springer, Cham. https://doi.org/10.1007/978-3-030-86523-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86523-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86522-1

  • Online ISBN: 978-3-030-86523-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics