Agustsson, E., Sage, A., Timofte, R., Gool, L.V.: Optimal transport maps for distribution preserving operations on latent spaces of generative models. In: International Conference on Learning Representations (2019)
Google Scholar
Arvanitidis, G., Hansen, L.K., Hauberg, S.: Latent space oddity: on the curvature of deep generative models. In: International Conference on Learning Representations (2018)
Google Scholar
Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: International Conference on Learning Representations (2018)
Google Scholar
Bose, J., Smofsky, A., Liao, R., Panangaden, P., Hamilton, W.: Latent variable modelling with hyperbolic normalizing flows. In: International Conference on Machine Learning, pp. 1045–1055. PMLR (2020)
Google Scholar
Brehmer, J., Cranmer, K.: Flows for simultaneous manifold learning and density estimation. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Google Scholar
Chen, T.Q., Behrmann, J., Duvenaud, D.K., Jacobsen, J.H.: Residual flows for invertible generative modeling. In: Advances in Neural Information Processing Systems, pp. 9913–9923 (2019)
Google Scholar
Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical Japanese literature. CoRR abs/1812.01718 (2018)
Google Scholar
Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical variational auto-encoders. In: Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 856–865 (2018)
Google Scholar
Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Workshop Track Proceedings (2015)
Google Scholar
Dinh, L., Shol-Dickstein, J., Bengio, S.: Density estimation using Real NVP. In: International Conference on Learning Representations (2017)
Google Scholar
Gemici, M.C., Rezende, D., Mohamed, S.: Normalizing flows on Riemannian manifolds. CoRR abs/1611.02304 (2016)
Google Scholar
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Google Scholar
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)
Google Scholar
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)
Google Scholar
Kilcher, Y., Lucchi, A., Hofmann, T.: Semantic interpolation in implicit models. In: International Conference on Learning Representations (2018)
Google Scholar
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
Google Scholar
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)
Google Scholar
Kingma, D.P., Welling, M., et al.: An introduction to variational autoencoders. Found. Trends® Mach. Learn. 12(4), 307–392 (2019)
CrossRef
Google Scholar
Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1 x 1 convolutions. In: Advances in Neural Information Processing Systems, pp. 10215–10224 (2018)
Google Scholar
Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing Systems, pp. 4743–4751 (2016)
Google Scholar
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report (2009)
Google Scholar
LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs [Online]. http://yann.lecun.com/exdb/mnist, February 2010
Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22(57), 1–64 (2021)
MathSciNet
MATH
Google Scholar
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)
Google Scholar
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations, ICLR 2016 (2016)
Google Scholar
Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015)
Google Scholar
Rezende, D.J., et al.: Normalizing flows on tori and spheres. In: International Conference on Machine Learning, pp. 8083–8092 (2020)
Google Scholar
Rippel, O., Adams, R.P.: High-dimensional probability estimation with deep density models. CoRR abs/1302.5125 (2013)
Google Scholar
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
Google Scholar
Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, pp. 245–254 (1985)
Google Scholar
Tabak, E.G., Turner, C.V.: A family of nonparametric density estimation algorithms. Commun. Pure Appl. Math. 66(2), 145–164 (2013)
MathSciNet
CrossRef
Google Scholar
Tabak, E.G., Vanden-Eijnden, E.: Density estimation by dual ascent of the log-likelihood. Commun. Pure Appl. Math. 8(1), 217–233 (2010)
MathSciNet
MATH
Google Scholar
White, T.: Sampling generative networks. CoRR abs/1609.04468 (2016)
Google Scholar
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017)
Google Scholar
Xu, J., Durrett, G.: Spherical latent spaces for stable variational autoencoders. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4503–4513 (2018)
Google Scholar