Skip to main content

Interpretable Counterfactual Explanations Guided by Prototypes

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

We propose a fast, model agnostic method for finding interpretable counterfactual explanations of classifier predictions by using class prototypes. We show that class prototypes, obtained using either an encoder or through class specific k-d trees, significantly speed up the search for counterfactual instances and result in more interpretable explanations. We quantitatively evaluate interpretability of the generated counterfactuals to illustrate the effectiveness of our method on an image and tabular dataset, respectively MNIST and Breast Cancer Wisconsin (Diagnostic). Additionally, we propose a principled approach to handle categorical variables and illustrate our method on the Adult (Census) dataset. Our method also eliminates the computational bottleneck that arises because of numerical gradient evaluation for black box models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542

    Article  MathSciNet  MATH  Google Scholar 

  3. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975). https://doi.org/10.1145/361002.361007

    Article  MATH  Google Scholar 

  4. Bien, J., Tibshirani, R.: Prototype selection for interpretable classification. Ann. Appl. Stat. 5(4), 2403–2424 (2011). https://doi.org/10.1214/11-AOAS495

    Article  MathSciNet  MATH  Google Scholar 

  5. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005). https://doi.org/10.1007/0-387-28981-X

    Book  MATH  Google Scholar 

  6. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Mach. Learn. 10(1), 57–78 (1993). https://doi.org/10.1023/A:1022664626993

    Article  Google Scholar 

  7. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. Adv. Neural. Inf. Process. Syst. 31, 592–603 (2018)

    Google Scholar 

  8. Dhurandhar, A., Iyengar, V., Luss, R., Shanmugam, K.: Tip: typifying the interpretability of procedures. arXiv preprint arXiv:1706.02952 (2017)

  9. Dhurandhar, A., Pedapati, T., Balakrishnan, A., Chen, P.Y., Shanmugam, K., Puri, R.: Model agnostic contrastive explanations for structured data. arXiv preprint arXiv:1906.00117 (2019)

  10. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  11. Gurumoorthy, K.S., Dhurandhar, A., Cecchi, G.: Protodash: fast interpretable prototype selection. arXiv preprint arXiv:1707.01212 (2017)

  12. Jiang, H., Kim, B., Guan, M., Gupta, M.: To trust or not to trust a classifier. Adv. Neural. Inf. Process. Syst. 31, 5541–5552 (2018)

    Google Scholar 

  13. Kaufmann, L., Rousseeuw, P.: Clustering by means of medoids. Data Analysis based on the L1-Norm and Related Methods, pp. 405–416 (1987)

    Google Scholar 

  14. Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! criticism for interpretability. Adv. Neural. Inf. Process. Syst. 29, 2280–2288 (2016)

    Google Scholar 

  15. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-based inverse classification for interpretability in machine learning. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 100–111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91473-2_9

    Chapter  Google Scholar 

  16. Le, S.Q., Ho, T.B.: An association-based dissimilarity measure for categorical data. Pattern Recogn. Lett. 26(16), 2549–2557 (2005). https://doi.org/10.1016/j.patrec.2005.06.002

    Article  Google Scholar 

  17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)

    Google Scholar 

  18. Lim, J.N., Yamada, M., Schölkopf, B., Jitkrittum, W.: Kernel stein tests for multiple model comparison. In: Advances in Neural Information Processing Systems 32, pp. 2240–2250. Curran Associates, Inc. (2019)

    Google Scholar 

  19. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017)

    Google Scholar 

  20. Luss, R., Chen, P.Y., Dhurandhar, A., Sattigeri, P., Shanmugam, K., Tu, C.C.: Generating contrastive explanations with monotonic attribute functions. arXiv preprint arXiv:1905.12698 (2019)

  21. Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/interpretable-ml-book/. Accessed 22 Jan 2020

  22. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020). https://doi.org/10.1145/3351095.3372850

  23. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you”: explaining the predictions of any classifier. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  25. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Adv. Neural. Inf. Process. Syst. 30, 4077–4087 (2017)

    Google Scholar 

  26. Takigawa, I., Kudo, M., Nakamura, A.: Convex sets as prototypes for classifying patterns. Eng. Appl. Artif. Intell. 22(1), 101–108 (2009). https://doi.org/10.1016/j.engappai.2008.05.012

    Article  Google Scholar 

  27. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31, 841–887 (2018)

    Google Scholar 

  28. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Van Looveren .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 547 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Looveren, A., Klaise, J. (2021). Interpretable Counterfactual Explanations Guided by Prototypes. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12976. Springer, Cham. https://doi.org/10.1007/978-3-030-86520-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86520-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86519-1

  • Online ISBN: 978-3-030-86520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics