Skip to main content

A Bayesian Convolutional Neural Network for Robust Galaxy Ellipticity Regression

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Abstract

Cosmic shear estimation is an essential scientific goal for large galaxy surveys. It refers to the coherent distortion of distant galaxy images due to weak gravitational lensing along the line of sight. It can be used as a tracer of the matter distribution in the Universe. The unbiased estimation of the local value of the cosmic shear can be obtained via Bayesian analysis which relies on robust estimation of the galaxies ellipticity (shape) posterior distribution. This is not a simple problem as, among other things, the images may be corrupted with strong background noise. For current and coming surveys, another central issue in galaxy shape determination is the treatment of statistically dominant overlapping (blended) objects. We propose a Bayesian Convolutional Neural Network based on Monte-Carlo Dropout to reliably estimate the ellipticity of galaxies and the corresponding measurement uncertainties. We show that while a convolutional network can be trained to correctly estimate well calibrated aleatoric uncertainty, -the uncertainty due to the presence of noise in the images- it is unable to generate a trustworthy ellipticity distribution when exposed to previously unseen data (i.e. here, blended scenes). By introducing a Bayesian Neural Network, we show how to reliably estimate the posterior predictive distribution of ellipticities along with robust estimation of epistemic uncertainties. Experiments also show that epistemic uncertainty can detect inconsistent predictions due to unknown blended scenes.

The first author is preparing a PhD thesis at the LORIA Lab in the context of the AstroDeep Research Project (https://astrodeep.pages.in2p3.fr/website/projects/) funded by ANR under the grant ANR-19-CE23-0024.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML Proceedings 2016, JMLR Workshop and Conference Proceedings, vol. 48, pp. 1050–1059 (2016)

    Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Gal, Y.: Uncertainty in deep learning, PhD thesis, University of Cambridge (2016)

    Google Scholar 

  4. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: NIPS Proceedings 2017, pp. 3581–3590 (2017)

    Google Scholar 

  5. Lakshminarayanan, B., Pritzel, A., Blundell, A.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS Proceedings 2017, pp. 6402–6413 (2017)

    Google Scholar 

  6. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS Proceedings 2017, pp. 5574–5584 (2017)

    Google Scholar 

  7. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Le, V.Q., Smola, J.A., Canu, S.: Heteroscedastic Gaussian process regression. In: ICML Proceedings 2005, vol. 119, pp. 489–496 (2005)

    Google Scholar 

  9. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: a tutorial introduction. CoRR. http://arxiv.org/abs/1910.09457 (2019)

  10. Depeweg, S., et al.: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In: ICML Proceedings 2018, vol. 80, pp. 1192–1201 (2018)

    Google Scholar 

  11. Hinton, G.E., van Camp, D.: Keeping the neural networks simple by minimizing the description length of the weights. In: Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, COLT 1993, pp. 5–13 (1993)

    Google Scholar 

  12. Dieleman, S., Willett, W.K., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc. 450(2), 1441–1459 (2015)

    Article  Google Scholar 

  13. Kaiser, N., Squires, G., Broadhurst, T.: A method for weak lensing observations. Astrophys. J. 449, 460–475 (1995)

    Article  Google Scholar 

  14. Rowe B., et al.: GalSim: the modular galaxy image simulation toolkit. https://github.com/GalSim-developers/GalSim (2015)

  15. Goodfellow, I.J., et al.: Maxout networks. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 1319–1327 (2013)

    Google Scholar 

  16. Abell, P.A., et al.: LSST science collaboration. LSST science book. arXiv, arXiv:0912.0201 (2009)

  17. Kilbinger, M.: Cosmology with cosmic shear observations: a review. Rep. Prog. Phys. 78, 086901 (2015)

    Google Scholar 

  18. Bosch, J., et al.: The hyper suprime-cam software pipeline. Publications of the Astronomical Society of Japan 70, S5 (2018)

    Google Scholar 

  19. Sanchez, J., Mendoza, I., Kirkby, D.P., Burchat, P.R.: Effects of overlapping sources on cosmic shear estimation: statistical sensitivity and pixel-noise bias. arXiv e-prints. arXiv:2103.02078 (2021)

  20. Mandelbaum, R., et al.: The third gravitational lensing accuracy testing (GREAT3) challenge handbook. Astrophys. J. Suppl. Ser. 212, 5 (2014)

    Google Scholar 

  21. Mandelbaum, R.: Weak lensing for precision cosmology. Annu. Rev. Astron. Astrophys. 56, 393 (2018)

    Google Scholar 

  22. Bertin, E., Arnouts, S.: SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393 (1996)

    Google Scholar 

  23. Melchior, P., et al.: SCARLET: source separation in multi-band images by constrained matrix factorization. Astron. Comput. 24, 129 (2018)

    Google Scholar 

  24. Arcelin, B., Doux, C., Aubourg, E., Roucelle, C.: LSST dark energy science collaboration: deblending galaxies with variational autoencoders: a joint multi-band, multi-instrument approach. Mon. Not. R. Astron. Soc. 500, 531 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Theobald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theobald, C., Arcelin, B., Pennerath, F., Conan-Guez, B., Couceiro, M., Napoli, A. (2021). A Bayesian Convolutional Neural Network for Robust Galaxy Ellipticity Regression. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12979. Springer, Cham. https://doi.org/10.1007/978-3-030-86517-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86517-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86516-0

  • Online ISBN: 978-3-030-86517-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics