Skip to main content

Quantifying Explanations of Neural Networks in E-Commerce Based on LRP

  • Conference paper
  • First Online:
Book cover Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Abstract

Neural networks are a popular tool in e-commerce, in particular for product recommendations. To build reliable recommender systems, it is crucial to understand how exactly recommendations come about. Unfortunately, neural networks work as black boxes that do not provide explanations of how the recommendations are made.

In this paper, we present TransPer, an explanation framework for neural networks. It uses novel, explanation measures based on Layer-Wise Relevance Propagation and can handle heterogeneous data and complex neural network architectures, such as combinations of multiple neural networks into one larger architecture. We apply and evaluate our framework on two real-world online shops. We show that the explanations provided by TransPer help (i) understand prediction quality, (ii) find new ideas on how to improve the neural network, (iii) help the online shops understand their customers, and (iv) meet legal requirements such as the ones mandated by GDPR.

Supported by the German Research Ministry (BMBF), the Smart Data Innovation Lab (01IS19030A), and the company econda GmbH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We provide the source code online at https://github.com/Krusinaldo9/TransPer.

References

  1. Ancona, M., Ceolini, E., et al.: Towards better understanding of gradient-based attribution methods for Deep Neural Networks. In: ICLR (2018)

    Google Scholar 

  2. Bach, S., Binder, A., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7) (2015)

    Google Scholar 

  3. Bettaney, E.M., Hardwick, S.R., et al.: Fashion outfit generation for e-commerce. In: eCom@SIGIR. CEUR, vol. 2410 (2019)

    Google Scholar 

  4. Bharadhwaj, H.: Layer-wise relevance propagation for explainable deep learning based speech recognition. In: IEEE ISSPIT, pp. 168–174 (2018)

    Google Scholar 

  5. Borisov, A., Markov, I., et al.: A neural click model for web search. In: WWW Conference, pp. 531–541 (2016)

    Google Scholar 

  6. Chen, M., Liu, P.: Performance evaluation of recommender systems. Int. J. Performability Eng. 13, 1246 (2017)

    Google Scholar 

  7. Chen, W., Huang, P., et al.: POG: personalized outfit generation for fashion recommendation at Alibaba iFashion. In: ACM SIGKDD, pp. 2662–2670 (2019)

    Google Scholar 

  8. econda: Personalization & Analytics. https://www.econda.de. Accessed 29 Mar 2021

  9. Gebremeskel, G.G., de Vries, A.P.: Recommender systems evaluations: offline, online, time and A/A test. In: CLEF. CEUR, vol. 1609, pp. 642–656 (2016)

    Google Scholar 

  10. General Data Protection Regulation: Art. 12 GDPR. https://gdpr-info.eu/art-12-gdpr/. Accessed 29 Mar 2021

  11. Khoali, M., Tali, A., et al.: Advanced recommendation systems through deep learning. In: NISS, pp. 51:1–51:8 (2020)

    Google Scholar 

  12. Laenen, K., Moens, M.: A comparative study of outfit recommendation methods with a focus on attention-based fusion. Inf. Process. Manag. 57(6), 102316 (2020)

    Article  Google Scholar 

  13. Li, Y., Cao, L., et al.: Mining fashion outfit composition using an end-to-end deep learning approach on set data. IEEE Trans. Multim. 19(8), 1946–1955 (2017)

    Article  Google Scholar 

  14. Loureiro, A.L.D., Miguéis, V.L., et al.: Exploring the use of deep neural networks for sales forecasting in fashion retail. Decis. Support Syst. 114, 81–93 (2018)

    Article  Google Scholar 

  15. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 193–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_10

    Chapter  Google Scholar 

  16. Montavon, G., Samek, W., et al.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  17. Nelaturi, N., Devi, G.: A product recommendation model based on recurrent neural network. Journal Européen des Systèmes Automatisés 52, 501–507 (2019)

    Article  Google Scholar 

  18. Nguyen, A., Oberföll, A., Färber, M.: Right for the right reasons: making image classification intuitively explainable. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 327–333. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_32

    Chapter  Google Scholar 

  19. Noh, H., Hong, S., et al.: Learning deconvolution network for semantic segmentation. In: IEEE ICCV, pp. 1520–1528 (2015)

    Google Scholar 

  20. Park, S.: Neural networks and customer grouping in e-commerce: a framework using fuzzy ART. In: AIWoRC, pp. 331–336 (2000)

    Google Scholar 

  21. Rumelhart, D.E., Hinton, G.E., et al.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  22. Shrikumar, A., Greenside, P., et al.: Learning important features through propagating activation differences. In: ICML, vol. 70, pp. 3145–3153 (2017)

    Google Scholar 

  23. Simonyan, K., Vedaldi, A., et al.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR (2014)

    Google Scholar 

  24. Springenberg, J.T., Dosovitskiy, A., et al.: Striving for simplicity: the all convolutional net. In: ICLR (2015)

    Google Scholar 

  25. Sundararajan, M., Taly, A., et al.: Axiomatic attribution for deep networks. In: ICML, vol. 70, pp. 3319–3328 (2017)

    Google Scholar 

  26. Yuan, J., Li, Y.-M., Liu, C.-L., Zha, X.F.: Leave-one-out cross-validation based model selection for manifold regularization. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6063, pp. 457–464. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13278-0_59

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, A., Krause, F., Hagenmayer, D., Färber, M. (2021). Quantifying Explanations of Neural Networks in E-Commerce Based on LRP. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12979. Springer, Cham. https://doi.org/10.1007/978-3-030-86517-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86517-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86516-0

  • Online ISBN: 978-3-030-86517-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics