Skip to main content

Conditional Neural Relational Inference for Interacting Systems

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12979))

  • 1174 Accesses

Abstract

In this work, we want to learn to model the dynamics of similar yet distinct groups of interacting objects. These groups follow some common physical laws that exhibit specificities that are captured through some vectorial description. We develop a model that allows us to do conditional generation from any such group given its vectorial description. Unlike previous work on learning dynamical systems that can only do trajectory completion and require a part of the trajectory dynamics to be provided as input in generation time, we do generation using only the conditioning vector with no access to generation time’s trajectories. We evaluate our model in the setting of modeling human gait and, in particular pathological human gait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first part of that trajectory will always be real data, even at test time, directly coming from the input trajectory as we will soon explain.

References

  1. Aliakbarian, M.S., Saleh, F., Salzmann, M., Petersson, L., Gould, S.: A stochastic conditioning scheme for diverse human motion prediction. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5222–5231 (2020)

    Google Scholar 

  2. Battaglia, P., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: Advances in Neural Information Processing Systems, pp. 4509–4517. Neural information processing systems foundation (2016)

    Google Scholar 

  3. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv (2018)

    Google Scholar 

  4. Chang, M.B., Ullman, T., Torralba, A., Tenenbaum, J.B.: A compositional object-based approach to learning physical dynamics. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014–2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, pp. 1724–1734. Association for Computational Linguistics (ACL) (2014). https://doi.org/10.3115/v1/d14-1179

  6. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  7. Gopalakrishnan, A., Mali, A., Kifer, D., Giles, C.L., Ororbia, A.G.: A neural temporal model for human motion prediction. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2019, pp. 12108–12117 (2018)

    Google Scholar 

  8. Guttenberg, N., Virgo, N., Witkowski, O., Aoki, H., Kanai, R.: Permutation-equivariant neural networks applied to dynamics prediction. arXiv (2016)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  10. Hoshen, Y.: VAIN: attentional multi-agent predictive modeling. In: Advances in Neural Information Processing Systems, December 2017, pp. 2702–2712. Neural information processing systems foundation (2017)

    Google Scholar 

  11. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 5308–5317. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.573

  12. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  14. Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. In: International Conference on Machine Learning (ICML), pp. 2688–2697 (2018)

    Google Scholar 

  15. Lehrmann, A.M., Gehler, P.V., Nowozin, S.: Efficient nonlinear Markov models for human motion. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1314–1321. IEEE Computer Society (2014). https://doi.org/10.1109/CVPR.2014.171

  16. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Symbiotic graph neural networks for 3D skeleton-based human action recognition and motion prediction. arXiv (2019)

    Google Scholar 

  17. Liu, Z., et al.: Towards natural and accurate future motion prediction of humans and animals. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10004–10012 (2019)

    Google Scholar 

  18. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  19. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, January 2017, pp. 4674–4683 (2017)

    Google Scholar 

  20. Pavlovic, V., Rehg, J.M., Maccormick, J.: Learning switching linear models of human motion. In: Neural Information Processing Systems (NeurIPS), pp. 981–987 (2001)

    Google Scholar 

  21. Pitto, L., et al.: SimCP: a simulation platform to predict gait performance following orthopedic intervention in children with cerebral palsy. Front. Neurorobot. 13 (2019). https://doi.org/10.3389/fnbot.2019.00054

  22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  23. Santoro, A., et al.: A simple neural network module for relational reasoning. In: Advances in Neural Information Processing Systems, December 2017, pp. 4968–4977 (2017)

    Google Scholar 

  24. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. van Steenkiste, S., Chang, M., Greff, K., Schmidhuber, J.: Relational neural expectation maximization: unsupervised discovery of objects and their interactions. In: 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings (2018)

    Google Scholar 

  26. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with backpropagation. In: Neural Information Processing Systems (NeurIPS), pp. 2244–2252 (2016)

    Google Scholar 

  27. Urtasun, R., Fleet, D.J., Geiger, A., Popović, J., Darrell, T.J., Lawrence, N.D.: Topologically-constrained latent variable models. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1080–1087. ACM Press, New York (2008). https://doi.org/10.1145/1390156.1390292

  28. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: video forecasting by generating pose futures. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 3352–3361 (2017)

    Google Scholar 

  29. Wang, B., Adeli, E., Chiu, H.K., Huang, D.A., Niebles, J.C.: Imitation learning for human pose prediction. In: Proceedings of the IEEE International Conference on Computer Vision, October 2019, pp. 7123–7132. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/ICCV.2019.00722

  30. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 283–298 (2008)

    Google Scholar 

  31. Watters, N., Tacchetti, A., Weber, T., Pascanu, R., Battaglia, P., Zoran, D.: Visual interaction networks: learning a physics simulator from video. In: Neural Information Processing Systems (NeurIPS), pp. 4539–4547 (2017)

    Google Scholar 

  32. Webb, E., Day, B., Andres-Terre, H., Lió, P.: Factorised neural relational inference for multi-interaction systems. In: ICML Workshop on Learning and Reasoning with Graph-Structured Representations (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation grant number CSSII5_177179 “Modeling pathological gait resulting from motor impairment”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao A. Candido Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candido Ramos, J.A., Blondé, L., Armand, S., Kalousis, A. (2021). Conditional Neural Relational Inference for Interacting Systems. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12979. Springer, Cham. https://doi.org/10.1007/978-3-030-86517-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86517-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86516-0

  • Online ISBN: 978-3-030-86517-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics