Skip to main content

Drug-Specific Orofacial Complications of Novel Anti-cancer Therapies

  • 115 Accesses

Abstract

Modern cancer therapy using drugs is evolving in a fast pace and so the understanding of complications arising from them. This chapter describes in detail all of the newer drugs, their mechanism of action, and potential complications that are pivotal to better care for a modern supportive care in cancer team.

Keywords

  • MABs
  • TKIs
  • Immune checkpoint inhibitors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86510-8_10
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-86510-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2

Bibliography

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;110:57–70.

    Google Scholar 

  2. Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science. 2000;287:1969–73.

    PubMed  Google Scholar 

  3. Kummar S. Drug development in oncology: classical cytotoxics and molecularly targeted agents. Br J Clin Pharmacol. 2006;62:15–26.

    PubMed  PubMed Central  Google Scholar 

  4. Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol. 2006;8:77–82.

    PubMed  Google Scholar 

  5. Vivot A. Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000–2015. Ann Oncol. 2017;28:1111–6.

    PubMed  Google Scholar 

  6. Jonker DJ. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–8.

    PubMed  Google Scholar 

  7. Shepherd F. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    PubMed  Google Scholar 

  8. Ocana A. Preclinical development of molecular targeted agents for cancer. Nat Rev Clin Oncolol. 2007;8:200–9.

    Google Scholar 

  9. Tol J. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360:563–72.

    PubMed  Google Scholar 

  10. Leyland-Jones B. Pharmacokinetics, safety, and efficacy of trastuzumab administered every three weeks in combination with paclitaxel. J Clin Oncol. 2003;21:3965–71.

    PubMed  Google Scholar 

  11. Long GV. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–51.

    PubMed  Google Scholar 

  12. Motzer RJ. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    PubMed  Google Scholar 

  13. Schlumberger M. Lenvatinib versus placebo in radioiodine—refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    PubMed  Google Scholar 

  14. Park SR. Safety and feasibility of targeted agent combinations in solid tumours. Nat Rev Clin Oncol. 2013;10:154–68.

    PubMed  Google Scholar 

  15. Kim R. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.

    PubMed  PubMed Central  Google Scholar 

  16. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    PubMed  Google Scholar 

  17. Sahin U. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:474–84.

    Google Scholar 

  18. Zwick E. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer. 2001;8(3):161–73.

    PubMed  Google Scholar 

  19. Folkman J. Tumour angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    PubMed  Google Scholar 

  20. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist (Suppl). 2004;9:2–10.

    Google Scholar 

  21. Motzer R. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369:1722–31.

    Google Scholar 

  22. LLovet JM. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    PubMed  Google Scholar 

  23. Hurwitz H. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    PubMed  Google Scholar 

  24. Wong ET. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Cancer Netw. 2011;9:403–7.

    Google Scholar 

  25. Bose D. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. Lancet Oncol. 2010;11(4):373–82.

    PubMed  Google Scholar 

  26. Cella D. Quality of life in patients with metastatic renal cell carcinoma treated with sunitinib or interferon alfa: results from a phase III randomized trial. J Clin Oncol. 2008;26(22):3763–9.

    PubMed  Google Scholar 

  27. Normanno N. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;17(366):2–16.

    Google Scholar 

  28. Zhou C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    PubMed  Google Scholar 

  29. Slamon D. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    PubMed  PubMed Central  Google Scholar 

  30. Bang Y. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    PubMed  Google Scholar 

  31. Krop IE. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(7):689–99.

    PubMed  Google Scholar 

  32. Peters TJ. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15(6):569–79.

    Google Scholar 

  33. Fakih M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol. 2010;14(Suppl 1):S18–30.

    Google Scholar 

  34. Pryor DI. Enhanced toxicity with concurrent cetuximab and radiotherapy in head and neck cancer. Radiother Oncol. 2009;90(2):172–6.

    PubMed  Google Scholar 

  35. Sequist LV. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Oncologist. 2007;12(3):325–30.

    PubMed  Google Scholar 

  36. Nan X. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer. Oncotarget. 2017;8(43):75712–26.

    PubMed  PubMed Central  Google Scholar 

  37. Geyer CE. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43.

    PubMed  Google Scholar 

  38. Davies H. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    PubMed  Google Scholar 

  39. Long VG. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;27(3):1631–9.

    Google Scholar 

  40. Rompoti N. Combination of BRAF inhibitors and brain radiotherapy in patients with metastatic melanoma shows minimal acute toxicity. J Clin Oncol. 2013;31(30):3844–5.

    PubMed  Google Scholar 

  41. Dréno B. Incidence, course, and management of toxicities associated with cobimetinib in combination with vemurafenib in the coBRIM study. Ann Oncol. 2017;28(5):1137–44.

    PubMed  Google Scholar 

  42. Lee C. Features and management of pyrexia with combined dabrafenib and trametinib in metastatic melanoma. Melanoma Res. 2014;24(5):468–74.

    PubMed  Google Scholar 

  43. Catalona WJ. Risks and benefits of repeated courses of intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer. J Urol. 1987;137(2):220–4.

    PubMed  Google Scholar 

  44. Mocellin S. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010;102(7):493–501.

    PubMed  Google Scholar 

  45. Messerschmidt JL. How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping nonimmunologists decipher recent advances. Oncologist. 2016;21(2):233–43.

    PubMed  PubMed Central  Google Scholar 

  46. Torphy R. Newly emerging immune checkpoints: promises for future cancer therapy. Int J Mol Sci. 2017;18(12):2642.

    PubMed Central  Google Scholar 

  47. Luke J, Ott P. PD-1 pathway inhibitors: the next generation of immunotherapy for advanced melanoma. Oncotarget. 2015;6(6):3479–92.

    PubMed  PubMed Central  Google Scholar 

  48. Champiat S. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27(4):559–74.

    PubMed  Google Scholar 

  49. Hodi FS. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    PubMed  PubMed Central  Google Scholar 

  50. Wolchok JD. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun. 2010;10:9.

    PubMed  PubMed Central  Google Scholar 

  51. Postow MA. Nivolumab and Ipilimumab versus Ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.

    PubMed  PubMed Central  Google Scholar 

  52. Barbee MS. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother. 2015;49(8):907–37.

    PubMed  Google Scholar 

  53. Nishijima TF. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. Oncologist. 2017;22(4):470–9.

    PubMed  PubMed Central  Google Scholar 

  54. Downey S. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res. 2007;13(22):6681–8.

    PubMed  PubMed Central  Google Scholar 

  55. Vigarios E. Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors. Support Care Cancer. 2017;25(5):1713–39.

    PubMed  Google Scholar 

  56. Wells SA. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.

    PubMed  Google Scholar 

  57. Grande E. Vandetanib in advanced medullary thyroid cancer: review of adverse event management strategies. Adv Ther. 2013;30(11):945–66.

    PubMed  PubMed Central  Google Scholar 

  58. Costa RB. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer. Oncotarget. 2018;9(31):22137–46.

    PubMed  PubMed Central  Google Scholar 

  59. Solange P. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38.

    Google Scholar 

  60. Lederman JA. Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Oncol. 2016;17(11):1579–89.

    Google Scholar 

  61. Kwapisz D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat. 2017;166(1):41–54.

    PubMed  Google Scholar 

  62. Rugo HS. Incidence and time course of everolimus-related adverse events in postmenopausal women with hormone receptor-positive advanced breast cancer: insights from BOLERO-2. Ann Oncol. 2014;25(4):808–15.

    PubMed  PubMed Central  Google Scholar 

  63. Motzer R. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.

    PubMed  Google Scholar 

  64. Boers-Doets C. Oral adverse events associated with tyrosine kinase and mammalian target of rapamycin inhibitors in renal cell carcinoma: a structured literature review. Oncologist. 2012;17:135–44.

    PubMed  Google Scholar 

  65. Martins F. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol. 2013;49(4):293–8.

    PubMed  Google Scholar 

  66. Sonis S. Preliminary characterization of oral lesions associated with inhibitors of mammalian target of rapamycin in cancer patients. Cancer. 2010;116(1):210–5.

    PubMed  Google Scholar 

  67. Oliviera MD. Clinical presentation and management of mTOR inhibitor-associated stomatitis. Oral Oncol. 2011;47(10):998–1003.

    Google Scholar 

  68. Haanen JB. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv119–42.

    PubMed  Google Scholar 

  69. Brahmer J. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasotha Sanmugarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gasper, H.M., Sanmugarajah, J. (2022). Drug-Specific Orofacial Complications of Novel Anti-cancer Therapies. In: Nair, R. (eds) Orofacial Supportive Care in Cancer . Springer, Cham. https://doi.org/10.1007/978-3-030-86510-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86510-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86509-2

  • Online ISBN: 978-3-030-86510-8

  • eBook Packages: MedicineMedicine (R0)