Skip to main content

A Stacking Approach for Cross-Domain Argument Identification

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12923)

Abstract

Argument identification is the cornerstone of a complete argument mining pipeline. Furthermore, it is the essential key for a wide spectrum of applications such as decision making, assisted writing, and legal counselling. Nevertheless, most existing argument mining approaches are limited to a single, specific domain. The problem of building a robust system whose models are able to generalize over heterogeneous datasets remains fairly unexplored. In this paper, we tackle the argument identification task on two different datasets (Student Essays and Web Discourse), following two approaches: a classical machine learning approach and a DistilBert-based approach. Moreover, this paper sheds light on a new direction for researchers in this domain since we validate the principle of ensemble learning. In other words, we show that combining multiple approaches via a well stacked model improves the system performance. The results are very promising with respect to the recent findings in the literature.

Keywords

  • Argument mining
  • Argument identification
  • Computational linguistics
  • Classical machine learning
  • Transfer learning
  • Stacking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86472-9_33
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-86472-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    Project source code is available at https://github.com/Alaa-Ah/Stacked-Model-for-Argument-Mining.

  2. 2.

    We used Transformers from huggingface.co for our experiments.

  3. 3.

    Here is an example (from Essays dataset) of an argument sentence that SVM fails to identify while DistilBERT succeeds: “Personally, I think both government and common people should have the responsibility for the environment, but we need to analyze some specific situations.”

References

  1. Govier, T.: A Practical Study of Argument. Wadsworth, Belmont (2001)

    Google Scholar 

  2. Missimer, C.A.: Good Arguments: An Introduction to Critical Thinking. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  3. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 46–56 (2014)

    Google Scholar 

  4. Wambsganss, T., Molyndris, N., Söllner, M.: Unlocking transfer learning in argumentation mining: a domain-independent modelling approach. In: 15th International Conference on Wirtschaftsinformatik (2020)

    Google Scholar 

  5. Reimers, N., Schiller, B., Beck, T., Daxenberger, J., Stab, C., Gurevych, I.: Classification and clustering of arguments with contextualized word embeddings. arXiv preprint arXiv:1906.09821 (2019)

  6. Niven, T., Kao, H.-Y.: Probing neural network comprehension of natural language arguments. arXiv preprint arXiv:1907.07355 (2019)

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  9. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 8(4), e1249 (2018)

    Google Scholar 

  10. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45 (2020)

    Google Scholar 

  12. Moens, M.-F., Boiy, E., Palau, R.M., Reed, C.: Automatic detection of arguments in legal texts. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 225–230 (2007)

    Google Scholar 

  13. Palau, R.M., Moens, M.-F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107 (2009)

    Google Scholar 

  14. Stab, C., Gurevych, I.: Annotating argument components and relations in persuasive essays. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 1501–1510 (2014)

    Google Scholar 

  15. Stab, C., Gurevych, I.: Parsing argumentation structures in persuasive essays. Comput. Linguist. 43(3), 619–659 (2017)

    MathSciNet  CrossRef  Google Scholar 

  16. Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43(1), 125–179 (2017)

    MathSciNet  CrossRef  Google Scholar 

  17. Daxenberger, J., Eger, S., Habernal, I., Stab, C., Gurevych, I.: What is the essence of a claim? Cross-domain claim identification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2055–2066, Copenhagen, Denmark, September 2017. Association for Computational Linguistics

    Google Scholar 

  18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    CrossRef  Google Scholar 

  19. Liga, D., Palmirani, M.: Transfer learning with sentence embeddings for argumentative evidence classification (2020)

    Google Scholar 

  20. Van der Laan, M.J., Polley, E.C., Hubbard, A.E.: Super learner (2007)

    Google Scholar 

  21. Goubin, R., Lefeuvre, D., Alhamzeh, A., Mitrovic, J., Egyed-Zsigmond, E., Fossi, L.G.: Bots and gender profiling using a multi-layer architecture. In: CLEF (Working Notes) (2019)

    Google Scholar 

  22. Ciccone, G., Sultan, A., Laporte, L., Egyed-Zsigmond, E., Alhamzeh, A., Granitzer, M.: Stacked gender prediction from tweet texts and images notebook for pan at CLEF 2018. In: CLEF 2018-Conference and Labs of the Evaluation, p. 11p (2018)

    Google Scholar 

  23. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  24. Knott, A., Dale, R.: Using linguistic phenomena to motivate a set of rhetorical relations, August 1997

    Google Scholar 

  25. Caselli, T., Basile, V., Mitrović, J., Kartoziya, I., Granitzer, M.: I feel offended, don’t be abusive! Implicit/explicit messages in offensive and abusive language. In: Proceedings of LREC (2020)

    Google Scholar 

  26. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  27. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

Download references

Acknowledgement

figure a

This work was supported by the French Ministry of Higher Education and Research. It has been also co-funded by the German Federal Ministry of Education and Research (BMBF) under the funding code 01|S20049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Alhamzeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Alhamzeh, A., Bouhaouel, M., Egyed-Zsigmond, E., Mitrović, J., Brunie, L., Kosch, H. (2021). A Stacking Approach for Cross-Domain Argument Identification. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2021. Lecture Notes in Computer Science(), vol 12923. Springer, Cham. https://doi.org/10.1007/978-3-030-86472-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86472-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86471-2

  • Online ISBN: 978-3-030-86472-9

  • eBook Packages: Computer ScienceComputer Science (R0)