Skip to main content

Using Augmented Reality in an Inquiry-Based Physics Laboratory Course

Part of the Communications in Computer and Information Science book series (CCIS,volume 1473)

Abstract

The use of Augmented Reality (AR) in inquiry-based learning scenarios is increasingly gaining interest in research with recent studies highlighting advantages in various learning scenarios. In particular the effects of AR on the learning gain and the cognitive load regarding electrical circuits in physics laboratory courses have recently been investigated. However, this research focused on more clinical studies and therefore might be limited in its ecological validity with regards to practical use. These studies also showed contrasting results with one study reporting a higher knowledge acquisition in a tablet-based AR setting while another study reported a higher knowledge acquisition and a reduction in extraneous cognitive load in a two-dimensional non-AR setting compared to a smartglasses-based AR environment. Consequently, the importance of context specific aspects must be considered more deeply. We present a randomized controlled trial in a graded physics laboratory course evaluating the effects of a smartglasses-based AR environment on cognitive load and conceptual knowledge acquisition compared to a two-dimensional non-AR setting while also exploring affective variables. The sample consists of a total of \(N=56\) students in two groups performing a set of eight traditional inquiry-based experiments exploring the relationships in basic circuit theory. Both groups showed no differences in cognitive load or knowledge acquisition and no differences regarding their affective state before or during the experiment. However, both groups achieved significant learning gains which is not guaranteed. While these results contrast previous research showing benefits of AR, they do not rule out AR being beneficial in other cases.

Keywords

  • Augmented reality
  • Physics laboratory experiments
  • Cognitive load
  • Split-attention effect
  • Inquiry learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86439-2_10
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-86439-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.

(translated from [43]).

Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

(based on Ivanjek et al. [19], translated for this publication) [23].

References

  1. Ainsworth, S.: Deft: a conceptual framework for considering learning with multiple representations. Learn. Instr. 16(3), 183–198 (2006). https://doi.org/10.1016/j.learninstruc.2006.03.001

    MathSciNet  CrossRef  Google Scholar 

  2. Altmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., Brünken, R.: The use of augmented reality to foster conceptual knowledge acquisition in stem laboratory courses–theoretical background and empirical results. Br. J. Edu. Technol. 51(3), 611–628 (2020). https://doi.org/10.1111/bjet.12900

    CrossRef  Google Scholar 

  3. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997). https://doi.org/10.1162/pres.1997.6.4.355

    CrossRef  Google Scholar 

  4. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

    Google Scholar 

  5. Beege, M., Wirzberger, M., Nebel, S., Schneider, S., Schmidt, N., Rey, G.D.: Spatial continuity effect vs. spatial contiguity failure. revising the effects of spatial proximity between related and unrelated representations. Front. Educ. 4, 89 (2019). https://doi.org/10.3389/feduc.2019.00086

  6. Billinghurst, M., Duenser, A.: Augmented reality in the classroom. Computer 45(7), 56–63 (2012). https://doi.org/10.1109/MC.2012.111

    CrossRef  Google Scholar 

  7. Bless, H., Fiedler, K.: Mood and the regulation of information processing and behavior. In: Affect in Social Thinking and Behavior, pp. 65–84. Psychology Press, New York (2006)

    Google Scholar 

  8. Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  9. Bujak, K.R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., Golubski, G.: A psychological perspective on augmented reality in the mathematics classroom. Comput. Educ. 68, 536–544 (2013). https://doi.org/10.1016/j.compedu.2013.02.017

    CrossRef  Google Scholar 

  10. Cammeraat, S., Rop, G., de Koning, B.B.: The influence of spatial distance and signaling on the split-attention effect. Comput. Hum. Behav. 105, 106203 (2020). https://doi.org/10.1016/j.chb.2019.106203

  11. de Jong, T.: Moving towards engaged learning in stem domains; there is no simple answer, but clearly a road ahead. J. Comput. Assist. Learn. 35(2), 153–167 (2019). https://doi.org/10.1111/jcal.12337

    CrossRef  Google Scholar 

  12. de Jong, T., Lazonder, A., Pedaste, M., Zacharia, Z.: Simulations, games, and modeling tools for learning. In: Fischer, F., Hmelo-Silver, C.E., Goldman, S.R., Reimann, P. (eds.) International Handbook of the Learning Sciences, pp. 256–266. Routledge, Taylor and Francis (2018). https://doi.org/10.4324/9781315617572

  13. de Jong, T., Linn, M.C., Zacharia, Z.C.: Physical and virtual laboratories in science and engineering education. Science (New York, N.Y.) 340(6130), 305–308 (2013). https://doi.org/10.1126/science.1230579

  14. Garzón, J., Acevedo, J.: Meta-analysis of the impact of augmented reality on students’ learning gains. Educ. Res. Rev. 27, 244–260 (2019). https://doi.org/10.1016/j.edurev.2019.04.001

    CrossRef  Google Scholar 

  15. Garzón, J., Kinshuk, Baldiris, S., Gutiérrez, J., Pavón, J.: How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educ. Res. Rev. 31, 100334 (2020). https://doi.org/10.1016/j.edurev.2020.100334

  16. Ginns, P.: Integrating information: a meta-analysis of the spatial contiguity and temporal contiguity effects. Learn. Instr. 16(6), 511–525 (2006). https://doi.org/10.1016/j.learninstruc.2006.10.001

    CrossRef  Google Scholar 

  17. Husnaini, S.J., Chen, S.: Effects of guided inquiry virtual and physical laboratories on conceptual understanding, inquiry performance, scientific inquiry self-efficacy, and enjoyment. Phys. Rev. Phys. Educ. Res. 15(1), 31 (2019). https://doi.org/10.1103/PhysRevPhysEducRes.15.010119

    CrossRef  Google Scholar 

  18. Ibáñez, M.B., Delgado-Kloos, C.: Augmented reality for stem learning: a systematic review. Comput. Educ. 123, 109–123 (2018). https://doi.org/10.1016/j.compedu.2018.05.002

    CrossRef  Google Scholar 

  19. Ivanjek, L., et al.: Development of a two-tier instrument on simple electric circuits (2020, manuscript in preparation)

    Google Scholar 

  20. Janssen, J., Kirschner, P.A.: Applying collaborative cognitive load theory to computer-supported collaborative learning: towards a research agenda. Educ. Tech. Res. Dev. 68(2), 783–805 (2020). https://doi.org/10.1007/s11423-019-09729-5

    CrossRef  Google Scholar 

  21. Jones, K.A., Sharma, R.S.: An experiment in blended learning: higher education without lectures. Int. J. Digit. Enterp. Technol. 1(3), 241 (2019). https://doi.org/10.1504/IJDET.2019.097846

    CrossRef  Google Scholar 

  22. Kapici, H.O., Akcay, H., de Jong, T.: Using hands-on and virtual laboratories alone or together—which works better for acquiring knowledge and skills? J. Sci. Educ. Technol. 28(3), 231–250 (2019). https://doi.org/10.1007/s10956-018-9762-0

    CrossRef  Google Scholar 

  23. Kapp, S., et al.: The effects of augmented reality: a comparative study in an undergraduate physics laboratory course. In: Proceedings of the 12th International Conference on Computer Supported Education, pp. 197–206. SCITEPRESS - Science and Technology Publications (2020). https://doi.org/10.5220/0009793001970206

  24. Kapp, S., et al.: Augmenting Kirchhoff’s laws: Using augmented reality and smartglasses to enhance conceptual electrical experiments for high school students. Phys. Teach. 57(1), 52–53 (2019). https://doi.org/10.1119/1.5084931

    CrossRef  Google Scholar 

  25. Knörzer, L., Brünken, R., Park, B.: Facilitators or suppressors: effects of experimentally induced emotions on multimedia learning. Learn. Instr. 44, 97–107 (2016). https://doi.org/10.1016/j.learninstruc.2016.04.002

    CrossRef  Google Scholar 

  26. Kuhn, J., Lukowicz, P., Hirth, M., Poxrucker, A., Weppner, J., Younas, J.: gPhysics–using smart glasses for head-centered, context-aware learning in physics experiments. IEEE Trans. Learn. Technol. 9(4), 304–317 (2016). https://doi.org/10.1109/TLT.2016.2554115

    CrossRef  Google Scholar 

  27. Leppink, J., Paas, F., Van der Vleuten, C.P.M., Van Gog, T., Van Merriënboer, J.J.G.: Development of an instrument for measuring different types of cognitive load. Behav. Res. Methods 45(4), 1058–1072 (2013). https://doi.org/10.3758/s13428-013-0334-1

    CrossRef  Google Scholar 

  28. Leppink, J., Paas, F., van Gog, T., van der Vleuten, C.P., van Merriënboer, J.J.: Effects of pairs of problems and examples on task performance and different types of cognitive load. Learn. Instr. 30, 32–42 (2014). https://doi.org/10.1016/j.learninstruc.2013.12.001

    CrossRef  Google Scholar 

  29. Mayer, R.E. (ed.): The Cambridge Handbook of Multimedia Learning. Cambridge University Press, Cambridge (2005). http://www.loc.gov/catdir/enhancements/fy0632/2005001322-d.html

  30. Mayer, R.E.: Multimedia Learning. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511811678

  31. Mayer, R.E., Moreno, R.: Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38(1), 43–52 (2003). https://doi.org/10.1207/S15326985EP3801_6

    CrossRef  Google Scholar 

  32. Mayer, R.E., Moreno, R., Boire, M., Vagge, S.: Maximizing constructivist learning from multimedia communications by minimizing cognitive load. J. Educ. Psychol. 91(4), 638–643 (1999). https://doi.org/10.1037/0022-0663.91.4.638

    CrossRef  Google Scholar 

  33. Mayer, R.E., Pilegard, C.: Principles for managing essential processing in multimedia learning: segmenting, pre-training, and modality principles. In: Mayer, R.E. (ed.) The Cambridge Handbook of Multimedia Learning, pp. 316–344. Cambridge Handbooks in Psychology. Cambridge University Press, New York (2014). https://doi.org/10.1017/CBO9781139547369.016

  34. Moreno, R.: Learning in high-tech and multimedia environments. Curr. Dir. Psychol. Sci. 15(2), 63–67 (2006). https://doi.org/10.1111/j.0963-7214.2006.00408.x

    CrossRef  Google Scholar 

  35. Moreno, R., Mayer, R.: Interactive multimodal learning environments. Educ. Psychol. Rev. 19(3), 309–326 (2007). https://doi.org/10.1007/s10648-007-9047-2

    CrossRef  Google Scholar 

  36. Pekrun, R.: The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18(4), 315–341 (2006). https://doi.org/10.1007/s10648-006-9029-9

    CrossRef  Google Scholar 

  37. Plass, J.L., Kaplan, U.: Emotional design in digital media for learning. In: Tettegah, S.Y., Gartmeier, M. (eds.) Emotions, Technology, Design, and Learning, pp. 131–161. Emotions and technology, Academic Press, Amsterdam and Boston and Heidelberg (2016). https://doi.org/10.1016/B978-0-12-801856-9.00007-4

  38. Pundak, D., Rozner, S.: Empowering engineering college staff to adopt active learning methods. J. Sci. Educ. Technol. 17(2), 152–163 (2008). https://doi.org/10.1007/s10956-007-9057-3

    CrossRef  Google Scholar 

  39. Rau, M.A.: Comparing multiple theories about learning with physical and virtual representations: conflicting or complementary effects? Educ. Psychol. Rev. 32(2), 297–325 (2020). https://doi.org/10.1007/s10648-020-09517-1

    CrossRef  Google Scholar 

  40. Rheinberg, F., Vollmeyer, R., Burns, B.D.: Fam: Ein fragebogen zur erfassung aktuller motivation in lern- und leistungssituationen. Diagnostica 47(2), 57–66 (2001). https://doi.org/10.1026//0012-1924.47.2.57

    CrossRef  Google Scholar 

  41. Russell, J.A.: Core affect and the psychological construction of emotion. Psychol. Rev. 110(1), 145–172 (2003). https://doi.org/10.1037/0033-295x.110.1.145

    CrossRef  Google Scholar 

  42. Santos, M.E.C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., Kato, H.: Augmented reality learning experiences: survey of prototype design and evaluation. IEEE Trans. Learn. Technol. 7(1), 38–56 (2014). https://doi.org/10.1109/TLT.2013.37

    CrossRef  Google Scholar 

  43. Schallberger, U.: Kurzskalen zur erfassung der positiven aktivierung, negativen aktivierung und valenz in experience sampling studien (panava-ks): Theoretische und methodische grundlagen, konstruktvalidität und psychometrische eigenschaften bei der beschreibung intra- und interindividueller unterschiede. Forschungsberichte aus dem Projekt: Qualität des Erlebens in Arbeit und Freizeit 6 (2005). http://www.psychologie.uzh.ch/institut/angehoerige/emeriti/schallberger/schallberger-pub/PANAVA_05.pdf

  44. Schroeder, N.L., Cenkci, A.T.: Spatial contiguity and spatial split-attention effects in multimedia learning environments: a meta-analysis. Educ. Psychol. Rev. 30(3), 679–701 (2018). https://doi.org/10.1007/s10648-018-9435-9

    CrossRef  Google Scholar 

  45. Stark, L.: Emotionen und Lernen mit Multimedia. Dissertation, Saarländische Universitäts- und Landesbibliothek, Saarbrücken (2016). http://scidok.sulb.uni-saarland.de/volltexte/2017/6767/

  46. Stark, L., Malkmus, E., Stark, R., Brünken, R., Park, B.: Learning-related emotions in multimedia learning: an application of control-value theory. Learn. Instr. 58, 42–52 (2018). https://doi.org/10.1016/j.learninstruc.2018.05.003

    CrossRef  Google Scholar 

  47. Strzys, M.P., et al.: Physics holo.lab learning experience: using smartglasses for augmented reality labwork to foster the concepts of heat conduction. Eur. J. Phys. 39(3), 035703 (2018). https://doi.org/10.1088/1361-6404/aaa8fb. https://iopscience.iop.org/article/10.1088/1361-6404/aaa8fb/pdf

  48. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12(2), 257–285 (1988). https://doi.org/10.1016/0364-0213(88)90023-7. http://www.sciencedirect.com/science/article/pii/0364021388900237

  49. Sweller, J.: Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 22(2), 123–138 (2010). https://doi.org/10.1007/s10648-010-9128-5

    CrossRef  Google Scholar 

  50. Sweller, J., Chandler, P.: Why some material is difficult to learn. Cogn. Instr. 12(3), 185–233 (1994). https://doi.org/10.1207/s1532690xci1203_1

    CrossRef  Google Scholar 

  51. Sweller, J., van Merriënboer, J.J.G., Paas, F.: Cognitive architecture and instructional design: 20 years later. Educ. Psychol. Rev. 31(2), 261–292 (2019). https://doi.org/10.1007/s10648-019-09465-5

    CrossRef  Google Scholar 

  52. Sweller, J., van Merrienboer, J.J.G., Paas, F.G.W.C.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998). https://doi.org/10.1023/A:1022193728205

    CrossRef  Google Scholar 

  53. Thees, M., et al.: Augmented reality for inquiry learning in stem laboratory courses: opportunities and risks, but no simple answers: manuscript submitted for publication (2020, manuscript submitted for publication)

    Google Scholar 

  54. Thees, M., Kapp, S., Strzys, M.P., Beil, F., Lukowicz, P., Kuhn, J.: Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Comput. Hum. Behav. 108, 106316 (2020). https://doi.org/10.1016/j.chb.2020.106316

  55. van Merriënboer, J.J.G., Sweller, J.: Cognitive load theory and complex learning: recent developments and future directions. Educ. Psychol. Rev. 17(2), 147–177 (2005). https://doi.org/10.1007/s10648-005-3951-0

    CrossRef  Google Scholar 

  56. Vosniadou, S.: Conceptual change and education. Hum. Dev. 50(1), 47–54 (2007). https://doi.org/10.1159/000097684

    CrossRef  Google Scholar 

  57. Wilcox, B.R., Lewandowski, H.J.: Developing skills versus reinforcing concepts in physics labs: insight from a survey of students’ beliefs about experimental physics. Phys. Rev. Phys. Educ. Res. 13(1), 65 (2017). https://doi.org/10.1103/PhysRevPhysEducRes.13.010108

    CrossRef  Google Scholar 

Download references

Acknowledgements

Support from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; BMBF) via the projects “GeAR” (Grant No. 01JD1811B) and “gLabAssist” (Grant No. 16DHL1022) is gratefully acknowledged.

We thank the Microelectronic System Design Research Group/Technische Universität Kaiserslautern (chaired by Prof. Norbert Wehn), especially Frederik Lauer and Carl Rheinländer, for providing the hardware components for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kapp, S. et al. (2021). Using Augmented Reality in an Inquiry-Based Physics Laboratory Course. In: Lane, H.C., Zvacek, S., Uhomoibhi, J. (eds) Computer Supported Education. CSEDU 2020. Communications in Computer and Information Science, vol 1473. Springer, Cham. https://doi.org/10.1007/978-3-030-86439-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86439-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86438-5

  • Online ISBN: 978-3-030-86439-2

  • eBook Packages: Computer ScienceComputer Science (R0)