Skip to main content

DAEMA: Denoising Autoencoder with Mask Attention

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

Missing data is a recurrent and challenging problem, especially when using machine learning algorithms for real-world applications. For this reason, missing data imputation has become an active research area, in which recent deep learning approaches have achieved state-of-the-art results. We propose DAEMA (Denoising Autoencoder with Mask Attention), an algorithm based on a denoising autoencoder architecture with an attention mechanism. While most imputation algorithms use incomplete inputs as they would use complete data - up to basic preprocessing (e.g. mean imputation) - DAEMA leverages a mask-based attention mechanism to focus on the observed values of its inputs. We evaluate DAEMA both in terms of reconstruction capabilities and downstream prediction and show that it achieves superior performance to state-of-the-art algorithms on several publicly available real-world datasets under various missingness settings.

S. Tihon and M. U. Javaid—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/euranova/DAEMA.

References

  1. van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45(3), 1–68 (2010)

    Google Scholar 

  2. Camino, R.D., Hammerschmidt, C.A., State, R.: Improving missing data imputation with deep generative models. arXiv preprint arXiv:1902.10666 (2019)

  3. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  4. Gondara, L., Wang, K.: MIDA: multiple imputation using denoising autoencoders. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 260–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_21

    Chapter  Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: NIPS, pp. 5769–5779 (2017). http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  8. McCoy, J.T., Kroon, S., Auret, L.: Variational autoencoders for missing data imputation with application to a simulated milling circuit. IFAC-PapersOnLine 51(21), 141–146 (2018)

    Article  Google Scholar 

  9. Muzellec, B., Josse, J., Boyer, C., Cuturi, M.: Missing data imputation using optimal transport. In: International Conference on Machine Learning, pp. 7130–7140. PMLR (2020)

    Google Scholar 

  10. Nazabal, A., Olmos, P.M., Ghahramani, Z., Valera, I.: Handling incomplete heterogeneous data using VAEs. Pattern Recogn. 107, 107501 (2020)

    Article  Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Richardson, T.W., Wu, W., Lin, L., Xu, B., Bernal, E.A.: McFlow: Monte Carlo flow models for data imputation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14205–14214 (2020)

    Google Scholar 

  13. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  Google Scholar 

  14. Seaman, S., Galati, J., Jackson, D., Carlin, J.D.: What is meant by “missing at random’’? Stat. Sci. 28, 257–268 (2013)

    Article  MathSciNet  Google Scholar 

  15. Spinelli, I., Scardapane, S., Uncini, A.: Missing data imputation with adversarially-trained graph convolutional networks. Neural Netw. 129, 249–260 (2020)

    Article  Google Scholar 

  16. Stekhoven, D.J., Bühlmann, P.: MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)

    Article  Google Scholar 

  17. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 6000–6010 (2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need

  19. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  20. Wang, X., Li, A., Jiang, Z., Feng, H.: Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme. BMC Bioinform. 7(1), 1–10 (2006). https://doi.org/10.1186/1471-2105-7-32

    Article  Google Scholar 

  21. Wu, R., Zhang, A., Ilyas, I., Rekatsinas, T.: Attention-based learning for missing data imputation in HoloClean. In: Proceedings of Machine Learning and Systems, vol. 2, pp. 307–325 (2020)

    Google Scholar 

  22. Yoon, J., Jordon, J., Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: International Conference on Machine Learning, pp. 5689–5698. PMLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usama Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tihon, S., Javaid, M.U., Fourure, D., Posocco, N., Peel, T. (2021). DAEMA: Denoising Autoencoder with Mask Attention. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12891. Springer, Cham. https://doi.org/10.1007/978-3-030-86362-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86362-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86361-6

  • Online ISBN: 978-3-030-86362-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics