Skip to main content

Performance Estimation of a BOINC-Based Desktop Grid for Large-Scale Molecular Docking

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12942)

Abstract

This paper addresses the performance evaluation of a heterogeneous distributed computing environment (Desktop Grid) for large-scale medicinal chemistry experiments in silico. Dynamic change of the set of computational nodes, their heterogeneity and unreliability impose difficulties on task scheduling and algorithm scaling. We analyze the performance, provide efficiency metrics, statistics and analysis of the volunteer computing project SiDock@home.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alonso-Monsalve, S., García-Carballeira, F., Calderón, A.: ComBos: a complete simulator of volunteer computing and desktop grids. Simul. Modell. Pract. Theory 77, 197–211 (2017). https://doi.org/10.1016/j.simpat.2017.06.002. https://www.sciencedirect.com/science/article/pii/S1569190X17301028

  2. Anderson, D.P.: BOINC: a platform for volunteer computing. J. Grid Comput. 18(1), 99–122 (2020)

    Article  Google Scholar 

  3. By Editorial Team: The history of supercomputing vs. COVID-19. https://www.hpcwire.com/2021/03/09/the-history-of-supercomputing-vs-covid-19. Accessed 18 Mar 2021

  4. Cai, Y., et al.: LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN. Open Eng. 7, 379–393 (2017)

    Article  Google Scholar 

  5. Climateprediction.net—the world’s largest climate modelling experiment for the 21st century. https://www.climateprediction.net. Accessed 10 June 2021

  6. Cloud Computing Services—Microsoft Azure. https://azure.microsoft.com/en-us/. Accessed 10 June 2021

  7. CmDock. https://gitlab.com/Jukic/cmdock. Accessed 10 June 2021

  8. CreditNew - BOINC. https://boinc.berkeley.edu/trac/wiki/CreditNew. Accessed 10 June 2021

  9. Curnow, H.J., Wichmann, B.A.: A synthetic benchmark. Comput. J. 19(1), 43–49 (1976)

    Article  Google Scholar 

  10. Distributed Computing – Computing Platforms. http://distributedcomputing.info/platforms.html. Accessed 10 June 2021

  11. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future. Concurr. Comput.: Pract. Exp. 15(9), 803–820 (2003). https://doi.org/10.1002/cpe.728. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.728

  12. Estrada, T., Taufer, M., Anderson, D.P.: Performance prediction and analysis of BOINC projects: an empirical study with EmBOINC. J. Grid Comput. 7(4), 537 (2009)

    Article  Google Scholar 

  13. Home – COVID.SI. https://covid.si/en. Accessed 10 June 2021

  14. Home—LHC@home. https://lhcathome.web.cern.ch. Accessed 10 June 2021

  15. Institute for Protein design, University of Washington: Rosetta’s role in fighting coronavirus. https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-coronavirus. Accessed 10 June 2021

  16. Ivashko, E., Chernov, I., Nikitina, N.: A survey of desktop grid scheduling. IEEE Trans. Parallel Distrib. Syst. 29(12), 2882–2895 (2018)

    Article  Google Scholar 

  17. Jukič, M., Janežič, D., Bren, U.: Ensemble docking coupled to linear interaction energy calculations for identification of coronavirus main protease (3CLpro) non-covalent small-molecule inhibitors. Molecules 25(24), 5808 (2020)

    Article  Google Scholar 

  18. Legrand, A.: Scheduling for large scale distributed computing systems: approaches and performance evaluation issues. Habilitation à diriger des recherches, Université Grenoble Alpes, November 2015. https://tel.archives-ouvertes.fr/tel-01247932

  19. Rosetta@home. https://boinc.bakerlab.org. Accessed 10 June 2021

  20. SiDock@home. https://sidock.si/sidock. Accessed 10 June 2021

  21. Suhail, M.: Performance analysis of distributed systems using BOINC. Int. J. Comput. Appl. 975, 8887 (2016)

    Google Scholar 

  22. Together We Are Powerful - Folding@home. https://foldingathome.org. Accessed 10 June 2021

  23. Top50—Supercomputers [in Russian]. http://top50.supercomputers.ru/list. Accessed 10 June 2021

  24. Wrapp, D., et al.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483), 1260–1263 (2020)

    Article  Google Scholar 

  25. Zaikin, O., Manzyuk, M., Kochemazov, S., Bychkov, I.V., Semenov, A.A.: A volunteer-computing-based grid architecture incorporating idle resources of computational clusters. In: Dimov, I., Faragó, I., Vulkov, L.G. (eds.) Numerical Analysis and Its Applications. Lecture Notes in Computer Science, vol. 10187, pp. 769–776. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-57099-0_89

    Chapter  Google Scholar 

  26. Zimmerman, M.I., et al.: SARS-CoV-2 simulations go exascale to capture spike opening and reveal cryptic pockets across the proteome. bioRxiv (2020). https://doi.org/10.1101/2020.06.27.175430. https://www.biorxiv.org/content/early/2020/10/07/2020.06.27.175430

Download references

Acknowledgements

The initial library (one billion of compounds) was prepared with the generous help of Microsoft that donated computational resources in the Azure cloud platform [6]. COVID.SI team is grateful and looking forward to future collaborations.

We wholeheartedly thank all BOINC participants for their contributions.

Funding

This work was partly supported by the Scholarship of the President of the Russian Federation for young scientists and graduate students (project SP-609.2021.5); the Slovenian Ministry of Science and Education infrastructure project grant HPC-RIVR; the Slovenian Research Agency (ARRS) programme P2-0046 and J1-2471, the Physical Chemistry programme grant P1-0201; Slovenian Ministry of Education, Science and Sports programme grant OP20.04342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Nikitina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikitina, N., Manzyuk, M., Podlipnik, Č., Jukić, M. (2021). Performance Estimation of a BOINC-Based Desktop Grid for Large-Scale Molecular Docking. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86359-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86358-6

  • Online ISBN: 978-3-030-86359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics