Skip to main content

Towards Ontologically Explainable Classifiers

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12892))

Included in the following conference series:

Abstract

In order to meet the explainability requirement of AI using Deep Learning (DL), this paper explores the contributions and feasibility of a process designed to create ontologically explainable classifiers while using domain ontologies. The approach is illustrated with the help of the Pizzas ontology that is used to create a synthetic image classifier that is able to provide visual explanations concerning a selection of ontological features. The approach is implemented by completing a DL model with ontological tensors that are generated from the ontology expressed in Description Logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. ArXiv abs/1910.10045 (2020)

  2. Bahadori, M.T., Heckerman, D.: Debiasing concept bottleneck models with a causal analysis technique (2020)

    Google Scholar 

  3. Confalonieri, R., Besold, T.R.: Trepan reloaded: a knowledge-driven approach to explaining black-box models. In: ECAI (2020)

    Google Scholar 

  4. Conigliaro, D., Ferrario, R., Hudelot, C., Porello, D.: Integrating computer vision algorithms and ontologies for spectator crowd behavior analysis. In: Group and Crowd Behavior for Computer Vision (2017)

    Google Scholar 

  5. Ding, Z., Yao, L., Liu, B., Wu, J.: Review of the application of ontology in the field of image object recognition. In: ICCMS 2019 (2019)

    Google Scholar 

  6. Dosilovic, F.K., Br\(\check{c}\)i\(\check{c}\), M., Hlupic, N.: Explainable artificial intelligence: a survey. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215 (2018)

    Google Scholar 

  7. Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Do semantic parts emerge in convolutional neural networks? Int. J. Comput. Vis. 126, 476–494 (2017)

    Article  MathSciNet  Google Scholar 

  8. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_1

    Chapter  Google Scholar 

  9. Lipton, Z.C.: The mythos of model interpretability. Queue 16, 31–57 (2018)

    Article  Google Scholar 

  10. Losch, M., Fritz, M., Schiele, B.: Interpretability beyond classification output: semantic bottleneck networks. ArXiv abs/1907.10882 (2019)

    Google Scholar 

  11. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS (2017)

    Google Scholar 

  12. Marcos, D., Lobry, S., Tuia, D.: Semantically interpretable activation maps: what-where-how explanations within CNNs. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4207–4215 (2019)

    Google Scholar 

  13. Martens, D., Provost, F.: Explaining data-driven document classifications. MIS Q. 38, 73–99 (2014)

    Article  Google Scholar 

  14. Papadopoulos, D.P., Tamaazousti, Y., Ofli, F., Weber, I., Torralba, A.: How to make a pizza: learning a compositional layer-based GAN model. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7994–8003 (2019)

    Google Scholar 

  15. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. ArXiv abs/1505.04597 (2015)

  17. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  18. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128, 336–359 (2019)

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  20. Zhang, Q., Wu, Y., Zhu, S.: Interpretable convolutional neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8827–8836 (2018)

    Google Scholar 

  21. Zhitomirsky-Geffet, M., Erez, E.S., Bar-Ilan, J.: Toward multiviewpoint ontology construction by collaboration of non-experts and crowdsourcing: the case of the effect of diet on health. J. Assoc. Inf. Sci. Technol. 68, 681–694 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Bourguin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourguin, G., Lewandowski, A., Bouneffa, M., Ahmad, A. (2021). Towards Ontologically Explainable Classifiers. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12892. Springer, Cham. https://doi.org/10.1007/978-3-030-86340-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86340-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86339-5

  • Online ISBN: 978-3-030-86340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics