Azadi, S., Fisher, M., Kim, V.G., Wang, Z., Shechtman, E., Darrell, T.: Multi-content GAN for few-shot font style transfer. In: CVPR (2018)
Google Scholar
Cha, J., Chun, S., Lee, G., Lee, B., Kim, S., Lee, H.: Few-shot compositional font generation with dual memory. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 735–751. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_43
CrossRef
Google Scholar
Chen, T., Wang, Z., Xu, N., Jin, H., Luo, J.: Large-scale tag-based font retrieval with generative feature learning. In: ICCV (2019)
Google Scholar
Davis, R.C., Smith, H.J.: Determinants of feeling tone in type faces. J. Appl. Psychol. 17(6), 742–764 (1933)
CrossRef
Google Scholar
Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)
Hayashi, H., Abe, K., Uchida, S.: GlyphGAN: style-consistent font generation based on generative adversarial networks. Knowledge-Based Syst. 186, 104927 (2019)
CrossRef
Google Scholar
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS (2017)
Google Scholar
Ikoma, M., Iwana Brian, K., Uchida, S.: Effect of text color on word embeddings. In: DAS (2020)
Google Scholar
Jiang, Y., Lian, Z., Tang, Y., Xiao, J.: DCFont: an end-to-end deep Chinese font generation system. In: SIGGRAPH Asia (2017)
Google Scholar
Kaneko, T., Ushiku, Y., Harada, T.: Class-distinct and class-mutual image generation with GANs. In: BMVC (2019)
Google Scholar
Lyu, P., Bai, X., Yao, C., Zhu, Z., Huang, T., Liu, W.: Auto-encoder guided GAN for Chinese calligraphy synthesis. In: ICDAR, vol. 1, pp. 1095–1100 (2017)
Google Scholar
Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: CVPR (2019)
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)
Google Scholar
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML (2017)
Google Scholar
O’Donovan, P., Lībeks, J., Agarwala, A., Hertzmann, A.: Exploratory font selection using crowdsourced attributes. ACM Trans. Graph. 33(4), 92 (2014)
Google Scholar
Poffenberger, A.T., Franken, R.: A study of the appropriateness of type faces. J. Appl. Psychol. 7(4), 312–329 (1923)
CrossRef
Google Scholar
Shirani, A., Dernoncourt, F., Echevarria, J., Asente, P., Lipka, N., Solorio, T.: Let me choose: from verbal context to font selection. In: ACL (2020)
Google Scholar
Vijayakumar, A., Vedantam, R., Parikh, D.: Sound-Word2Vec: learning word representations grounded in sounds. In: EMNLP (2017)
Google Scholar
Wang, Y., Gao, Y., Lian, Z.: Attribute2font: creating fonts you want from attributes. ACM Trans. Graph. 39(4), 69 (2020)
Google Scholar
Wang, Z., et al.: DeepFont: identify your font from an image. In: ACM Multimedia (2015)
Google Scholar
Zhu, A., Lu, X., Bai, X., Uchida, S., Iwana, B.K., Xiong, S.: Few-shot text style transfer via deep feature similarity. IEEE Trans. Image Proc. 29, 6932–6946 (2020)
CrossRef
Google Scholar
Zramdini, A., Ingold, R.: Optical font recognition using typographical features. IEEE Trans. Patt. Anal. Mach. Intell. 20(8), 877–882 (1998)
CrossRef
Google Scholar