Skip to main content

Text-Conditioned Character Segmentation for CTC-Based Text Recognition

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12823))

Included in the following conference series:

Abstract

Segmentation-free text recognition achieves successful performance because it can accurately recognize overlapping and touching characters, which is difficult for over-segmentation approaches. In contrast, character segmentation is helpful for explanations, posterior document layout analysis, and other applications. Some methods have been proposed to balance the capability of character segmentation and accurate recognition, but they cannot predict segmentation candidates for characters that can be differently segmented, which bottlenecks segmentation accuracy. In this paper, we propose Text-conditioned Character Segmentation (TCSeg) to improve segmentation accuracy. TCSeg segments characters differently according to each text candidate prediction by segmentation-free text recognition without affecting recognition accuracy. We also propose Overlap and Skip Error Suppression (OSESup) to suppress unintuitive errors using the estimated segmentation. An experiment on text recognition of handwritten Chinese characters shows that TCSeg segments characters more accurately than an existing segmentation method and that OSESup improves the recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.tensorflow.org/.

References

  1. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  2. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  3. Wang, J., Hu, X.: Gated recurrent convolution neural network for OCR. In: Advances in Neural Information Processing Systems, pp. 335–344 (2017)

    Google Scholar 

  4. Liu, W., Chen, C., Wong, K.Y.K., Su, Z., Han, J.: Star-net: a spatial attention residue network for scene text recognition. In: BMVC, vol. 2, p. 7 (2016)

    Google Scholar 

  5. Strauß, T., Leifert, G., Labahn, R., Hodel, T., Mühlberger, G.: ICFHR 2018 competition on automated text recognition on a read dataset. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 477–482. IEEE (2018)

    Google Scholar 

  6. Hu, W., Cai, X., Hou, J., Yi, S., Lin, Z.: GTC: guided training of CTC towards efficient and accurate scene text recognition. In: AAAI, pp. 11005–11012 (2020)

    Google Scholar 

  7. Ingle, R.R., Fujii, Y., Deselaers, T., Baccash, J., Popat, A.C.: A scalable handwritten text recognition system. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 17–24. IEEE (2019)

    Google Scholar 

  8. Xiao, S., Peng, L., Yan, R., Wang, S.: Deep network with pixel-level rectification and robust training for handwriting recognition. SN Comput. Sci. 1(3), 1–13 (2020)

    Article  Google Scholar 

  9. Tanaka, R., Ono, S., Furuhata, A.: Fast distributional smoothing for regularization in CTC applied to text recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 302–308. IEEE (2019)

    Google Scholar 

  10. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: towards accurate text recognition in natural images. In: Proceedings of the IEEE international conference on computer vision. pp. 5076–5084 (2017)

    Google Scholar 

  11. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2018)

    Article  Google Scholar 

  12. Baek, J., et al.: What is wrong with scene text recognition model comparisons? Dataset and model analysis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4715–4723 (2019)

    Google Scholar 

  13. Wu, Y.C., Yin, F., Liu, C.L.: Improving handwritten Chinese text recognition using neural network language models and convolutional neural network shape models. Pattern Recognit. 65, 251–264 (2017)

    Article  Google Scholar 

  14. Wang, Z.X., Wang, Q.F., Yin, F., Liu, C.L.: Weakly supervised learning for over-segmentation based handwritten Chinese text recognition. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 157–162. IEEE (2020)

    Google Scholar 

  15. Peng, D., Jin, L., Wu, Y., Wang, Z., Cai, M.: A fast and accurate fully convolutional network for end-to-end handwritten Chinese text segmentation and recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 25–30. IEEE (2019)

    Google Scholar 

  16. Qi, X., Chen, Y., Xiao, R., Li, C.G., Zou, Q., Cui, S.: A novel joint character categorization and localization approach for character-level scene text recognition. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 5, pp. 83–90. IEEE (2019)

    Google Scholar 

  17. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2008)

    Article  Google Scholar 

  18. Scheidl, H., Fiel, S., Sablatnig, R.: Word beam search: a connectionist temporal classification decoding algorithm. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 253–258. IEEE (2018)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  21. Cong, F., Hu, W., Huo, Q., Guo, L.: A comparative study of attention-based encoder-decoder approaches to natural scene text recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 916–921. IEEE (2019)

    Google Scholar 

  22. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: CASIA online and offline Chinese handwriting databases. In: 2011 International Conference on Document Analysis and Recognition, pp. 37–41. IEEE (2011)

    Google Scholar 

  23. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese handwriting recognition competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1464–1470. IEEE (2013)

    Google Scholar 

  24. Wang, Z.R., Du, J., Wang, J.M.: Writer-aware CNN for parsimonious hmm-based offline handwritten Chinese text recognition. Pattern Recognit. 100, 107102 (2020)

    Article  Google Scholar 

  25. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanaka, R., Osada, K., Furuhata, A. (2021). Text-Conditioned Character Segmentation for CTC-Based Text Recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86334-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86333-3

  • Online ISBN: 978-3-030-86334-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics