Aghdam, H.H., González-García, A., van de Weijer, J., López, A.M.: Active learning for deep detection neural networks. In: ICCV, pp. 3671–3679 (2019)
Google Scholar
Beluch, W.H., Genewein, T., Nurnberger, A., Kohler, J.M.: The power of ensembles for active learning in image classification. In: CVPR, pp. 9368–9377 (2018). https://doi.org/10.1109/CVPR.2018.00976
Buitrago, P.A., Nystrom, N.A.: Neocortex and bridges-2: a high performance AI+HPC ecosystem for science, discovery, and societal good. In: Nesmachnow, S., Castro, H., Tchernykh, A. (eds.) High Performance Computing, pp. 205–219. Springer International Publishing, Cham (2021)
CrossRef
Google Scholar
Clanuwat, T., Lamb, A., Kitamoto, A.: KuroNet: pre-modern Japanese Kuzushiji character recognition with deep learning. In: ICDAR, pp. 607–614 (2019)
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Google Scholar
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)
CrossRef
Google Scholar
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) ICML, vol. 70, pp. 1126–1135 (2017)
Google Scholar
Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. ICML 70, 1183–1192 (2017)
Google Scholar
Geifman, Y., El-Yaniv, R.: Deep active learning over the long tail (2017)
Google Scholar
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. CalTech Report, March 2007
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Kao, C.-C., Lee, T.-Y., Sen, P., Liu, M.-Y.: Localization-aware active learning for object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 506–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_32
CrossRef
Google Scholar
Krishna, R., et al.: The visual genome dataset v1.0 + v1.2 images. https://visualgenome.org/
Krishnamurthy, A., Agarwal, A., Huang, T.K., Daume, H., III., Langford, J.: Active learning for cost-sensitive classification. JMLR 20(65), 1–50 (2019)
MathSciNet
MATH
Google Scholar
Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced Research)
Google Scholar
Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007 (2017)
Google Scholar
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
CrossRef
Google Scholar
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)
Google Scholar
Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR (2019)
Google Scholar
Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: a uniquely flexible HPC resource for new communities and data analytics. In: XSEDE 2015: Scientific Advancements Enabled by Enhanced Cyberinfrastructure (2015). https://doi.org/10.1145/2792745.2792775
Qu, Z., Du, J., Cao, Y., Guan, Q., Zhao, P.: Deep active learning for remote sensing object detection (2020)
Google Scholar
Roy, S., Unmesh, A., Namboodiri, V.: Deep active learning for object detection. In: BMVC (2019)
Google Scholar
Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)
CrossRef
Google Scholar
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. CoRR abs/1503.03832 (2015)
Google Scholar
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (2018)
Google Scholar
Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: ICCV, pp. 5971–5980 (2019). https://doi.org/10.1109/ICCV.2019.00607
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. NIPS 30, 4077–4087 (2017)
Google Scholar
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR, pp. 1701–1708 (2014). https://doi.org/10.1109/CVPR.2014.220
Toropov, E., Buitrago, P.A., Moura, J.M.F.: Shuffler: A large scale data management tool for machine learning in computer vision. In: PEARC (2019)
Google Scholar
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J., Wilkins-Diehr, N.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(05), 62–74 (2014). https://doi.org/10.1109/MCSE.2014.80
CrossRef
Google Scholar
Villalonga, G., Lopez, A.M.: Co-training for on-board deep object detection (2020)
Google Scholar
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, k., Wierstra, D.: Matching networks for one shot learning. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS, vol. 29, pp. 3630–3638 (2016)
Google Scholar
Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–2600 (2017). https://doi.org/10.1109/TCSVT.2016.2589879
CrossRef
Google Scholar
Wang, Y., Yao, Q., Kwok, J., Ni, L.: Few-shot learning: a survey. arXiv preprint arXiv:1904.05046 (2019)
Xia, G., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: CVPR, pp. 3974–3983 (2018). https://doi.org/10.1109/CVPR.2018.00418
Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: CVPR, pp. 3530–3538 (2017)
Google Scholar
Yoo, D., Kweon, I.S.: Learning loss for active learning. In: CVPR, pp. 93–102 (2019). https://doi.org/10.1109/CVPR.2019.00018
Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: CVPR, pp. 4457–4465 (2017). https://doi.org/10.1109/CVPR.2017.474