Skip to main content

Continuous Inverse Kinematics in Singular Position

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 324))

Abstract

The problem of calculating inverse kinematics of a robotic manipulator is known to be non-trivial and not straightforward to solve for centuries. Hence, multiple different approaches have been developed, extended, and further developed that iteratively approximate toward a suitable solution. Unfortunately, all these existing solutions share the problem to get unreliable in singular positions – a standard configuration of human legs, e.g. when standing. Within this work, a simple extension to the iterative Damped Least Square algorithm is presented that covers the problematic, singular configuration case. The proposed algorithm is thereby focusing on continuous solving of small, iterative pose changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the Inverse Kinematics problem. Graph. Models 73(5), 243–260 (2011)

    Article  Google Scholar 

  2. Balestrino, A., De Maria, G., Sciavicco, L.: Robust control of robotic manipulators. IFAC Proc. Vol. 17(2), 2435–2440 (1984)

    Article  Google Scholar 

  3. Brown, J., Latombe, J.C., Montgomery, K.: Real-time knot-tying simulation. Vis. Comput. 20(2), 165–179 (2004)

    Article  Google Scholar 

  4. Buss, S.R., Kim, J.S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10(3), 37–49 (2005)

    Article  Google Scholar 

  5. Chiaverini, S., Egeland, O., Kanestrom, R.: Achieving user-defined accuracy with damped least-squares inverse kinematics. In: Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Pisa, Italy, vol. 1, pp. 672–677. IEEE (1991)

    Google Scholar 

  6. Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans. Control Syst. Technol. 2(2), 123–134 (1994)

    Article  Google Scholar 

  7. Courty, N., Arnaud, E.: Inverse kinematics using sequential Monte Carlo methods. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 1–10. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70517-8_1

    Chapter  Google Scholar 

  8. Duleba, I., Opalka, M.: A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators. Int. J. Appl. Math. Comput. Sci. 23(2), 373–382 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Article  MathSciNet  Google Scholar 

  10. Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-Based Inverse Kinematics. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, New York, NY, USA, vol. 10, pp. 522–531. Association for Computing Machinery (2004)

    Google Scholar 

  11. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Contr. 108(3), 163–171 (1986)

    Article  Google Scholar 

  12. Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: CARL – a compliant robotic leg featuring mono- and biarticular actuation. In: IEEE-RAS International Conference on Humanoid Robots (2017)

    Google Scholar 

  13. Vonwirth, P., Nejadfard, A., Mianowski, K., Berns, K.: SLIP-based concept of combined limb and body control of force-driven robots. In: Zeghloul, S., Laribi, M.A., Sandoval Arevalo, J.S. (eds.) RAAD 2020. MMS, vol. 84, pp. 547–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48989-2_58

  14. Wampler, C.: manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)

    Article  Google Scholar 

  15. Wang, L.C., Chen, C.: A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)

    Article  MathSciNet  Google Scholar 

  16. Wolovich, W., Elliott, H.: A computational technique for inverse kinematics. In: The 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, pp. 1359–1363. IEEE, December 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Vonwirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vonwirth, P., Berns, K. (2022). Continuous Inverse Kinematics in Singular Position. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_3

Download citation

Publish with us

Policies and ethics