Abstract
While Argument Mining has seen increasing success in monolingual settings, especially for the English language, other less-resourced languages are still lagging behind. In this paper, we build a Portuguese projected version of the Persuasive Essays corpus and evaluate it both intrinsically (through back-projection) and extrinsically (in a sequence tagging task). To build the corpus, we project the token-level annotations into a new Portuguese version using translations and respective alignments. Intrinsic evaluation entails rebuilding the English corpus using back alignment and back projection from the Portuguese version, comparing against the original English annotations. For extrinsic evaluation, we assess and compare the performance of machine learning models on several language variants of the corpus (including the Portuguese one), following both in-language/projection training and direct transfer. Our evaluation highlights the quality of the generated corpus. Experimental results show the effectiveness of the projection approach, while providing competitive baselines for the Portuguese version of the corpus. The corpus and code are available (https://github.com/AfonsoSalgadoSousa/argumentation_mining_pt).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
https://huggingface.co/transformers/pretrained_models.html, model id “bert-base-multilingual-cased”.
- 6.
- 7.
References
Ajjour, Y., Chen, W.F., Kiesel, J., Wachsmuth, H., Stein, B.: Unit segmentation of argumentative texts. In: Proceedings of the 4th Workshop on Argument Mining, pp. 118–128. ACL (September 2017)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations (Conference Track Proceedings), ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015)
Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the 58th Annual Meeting of the ACL, pp. 8440–8451. ACL (July 2020)
Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation without parallel data. arXiv preprint arXiv:1710.04087 (2017)
Das, D., Petrov, S.: Unsupervised part-of-speech tagging with bilingual graph-based projections. In: Proceedings of the 49th Annual Meeting of the ACL: Human Language Technologies, pp. 600–609. ACL (June 2011)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the ACL: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. ACL (2019)
Dyer, C., Chahuneau, V., Smith, N.A.: A simple, fast, and effective reparameterization of IBM model 2. In: Proceedings of the 2013 Conference of the North American Chapter of the ACL: Human Language Technologies, pp. 644–648. ACL (June 2013)
Eckle-Kohler, J., Kluge, R., Gurevych, I.: On the role of discourse markers for discriminating claims and premises in argumentative discourse. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2236–2242. ACL (September 2015)
Eger, S., Daxenberger, J., Gurevych, I.: Neural end-to-end learning for computational argumentation mining. In: Proceedings of the 55th Annual Meeting of the ACL (Volume 1: Long Papers), pp. 11–22. ACL (July 2017)
Eger, S., Daxenberger, J., Stab, C., Gurevych, I.: Cross-lingual argumentation mining: machine translation (and a bit of projection) is all you need! In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 831–844. ACL (August 2018)
Garg, S., Peitz, S., Nallasamy, U., Paulik, M.: Jointly learning to align and translate with transformer models. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019, pp. 4452–4461. ACL (2019)
Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43(1), 125–179 (2017)
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)
Jalili Sabet, M., Dufter, P., Yvon, F., Schütze, H.: SimAlign: high quality word alignments without parallel training data using static and contextualized embeddings. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 1627–1643. ACL (November 2020)
Li, M., Geng, S., Gao, Y., Peng, S., Liu, H., Wang, H.: Crowdsourcing argumentation structures in Chinese hotel reviews. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 87–92 (2017)
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the ACL (Volume 1: Long Papers), pp. 1064–1074. ACL (August 2016)
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany (Volume 1: Long Papers), pp. 1064–1074. Association for Computational Linguistics (August 2016). https://doi.org/10.18653/v1/P16-1101. https://www.aclweb.org/anthology/P16-1101
McDonald, R., Petrov, S., Hall, K.: Multi-source transfer of delexicalized dependency parsers. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 62–72. ACL (July 2011)
Nguyen, H., Litman, D.: Context-aware argumentative relation mining. In: Proceedings of the 54th Annual Meeting of the ACL (Volume 1: Long Papers), pp. 1127–1137. ACL (August 2016)
Och, F.J., Ney, H.: Improved statistical alignment models. In: Proceedings of the 38th Annual Meeting of the ACL, pp. 440–447. ACL (October 2000)
Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models. Comput. Linguist. 29(1), 19–51 (2003)
Palau, R.M., Moens, M.F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107. Association for Computing Machinery (2009)
Peldszus, A., Stede, M.: From argument diagrams to argumentation mining in texts: a survey. Int. J. Cogn. Inform. Nat. Intell. 7(1), 1–31 (2013)
Pikuliak, M., Šimko, M., Bieliková, M.: Cross-lingual learning for text processing: a survey. Expert Syst. Appl. 165, 113765 (2021)
Plank, B., Søgaard, A., Goldberg, Y.: Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss. In: Proceedings of the 54th Annual Meeting of the ACL (Volume 2: Short Papers), pp. 412–418. ACL (August 2016)
Rocha, G., Lopes Cardoso, H.: Towards a relation-based argument extraction model for argumentation mining. In: Camelin, N., Estève, Y., Martín-Vide, C. (eds.) SLSP 2017. LNCS (LNAI), vol. 10583, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68456-7_8
Rocha, G., Stab, C., Lopes Cardoso, H., Gurevych, I.: Cross-lingual argumentative relation identification: from English to Portuguese. In: Proceedings of the 5th Workshop on Argument Mining, pp. 144–154. ACL (November 2018)
Stab, C., Gurevych, I.: Parsing argumentation structures in persuasive essays. Comput. Linguist. 43(3), 619–659 (2017)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA. pp. 5998–6008 (2017)
Wang, H., Huang, Z., Dou, Y., Hong, Y.: Argumentation mining on essays at multi scales. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 5480–5493. International Committee on Computational Linguistics (December 2020)
Wolf, T., et al..: Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics (October 2020). https://www.aclweb.org/anthology/2020.emnlp-demos.6
Yang, S., Wang, Y., Chu, X.: A survey of deep learning techniques for neural machine translation. arXiv preprint arXiv:2002.07526 (2020)
Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging with hierarchical recurrent networks. In: 5th International Conference on Learning Representations (Conference Track Proceedings), ICLR 2017, Toulon, France, 24–26 April 2017. OpenReview.net (2017)
Yarowsky, D., Ngai, G., Wicentowski, R.: Inducing multilingual text analysis tools via robust projection across aligned corpora. In: Proceedings of the 1st International Conference on Human Language Technology Research (2001)
Zhang, Y., Gaddy, D., Barzilay, R., Jaakkola, T.: Ten pairs to tag - multilingual POS tagging via coarse mapping between embeddings. In: Proceedings of the 2016 Conference of the North American Chapter of the ACL: Human Language Technologies, pp. 1307–1317. ACL (June 2016)
Acknowledgment
This research is supported by LIACC (FCT/UID/CEC/0027/2020) and by project DARGMINTS (POCI/01/0145/FEDER/031460), funded by Fundação para a Ciência e a Tecnologia (FCT). Gil Rocha is supported by a PhD studentship (with reference SFRH/BD/140125/2018) from FCT.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sousa, A., Leite, B., Rocha, G., Lopes Cardoso, H. (2021). Cross-Lingual Annotation Projection for Argument Mining in Portuguese. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-86230-5_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86229-9
Online ISBN: 978-3-030-86230-5
eBook Packages: Computer ScienceComputer Science (R0)