Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A.: Digitized maps of the Habsburg Empire - the map sheets of the second military survey and their georeferenced version (2006)
Google Scholar
Ignjatić, J., Nikolić, B., Rikalović, A.: Deep learning for historical cadastral maps digitization: overview, challenges and potential (2018)
Google Scholar
Timilsina, S., Sharma, S., Aryal, J.: Mapping urban trees within cadastral parcels using an object-based convolutional neural network. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. 4, 111–117 (2019)
CrossRef
Google Scholar
Ostankovich, V., Afanasyev, I.: Illegal buildings detection from satellite images using googlenet and cadastral map. In: 2018 International Conference on Intelligent Systems (IS), pp. 616–623. IEEE (2018)
Google Scholar
Xia, X., Persello, C., Koeva, M.: Deep fully convolutional networks for cadastral boundary detection from UAV images. Remote Sens. 11(14), 1725 (2019)
CrossRef
Google Scholar
Fetai, B., Oštir, K., Kosmatin Fras, M., Lisec, A.: Extraction of visible boundaries for cadastral mapping based on UAV imagery. Remote Sens. 11(13), 1510 (2019)
CrossRef
Google Scholar
Nyandwi, E., Koeva, M., Kohli, D., Bennett, R.: Comparing human versus machine-driven cadastral boundary feature extraction. Remote Sens. 11(14), 1662 (2019)
CrossRef
Google Scholar
Kestur, R., et al.: UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle. J. Appl. Remote Sens. 12(1), 016020 (2018)
CrossRef
Google Scholar
Chen, Y., Carlinet, E., Chazalon, J., Mallet, C., Duménieu, B., Perret, J.: Combining deep learning and mathematical morphology for historical map segmentation, arXiv preprint arXiv:2101.02144 (2021)
Wick, C., Puppe, F.: Fully convolutional neural networks for page segmentation of historical document images. In: 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 287–292. IEEE (2018)
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984). https://doi.org/10.1145/357994.358023
CrossRef
Google Scholar
Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geogr. Inf. Geovisualization 10(2), 112–122 (1973)
Google Scholar
Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)
CrossRef
Google Scholar
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
MathSciNet
CrossRef
Google Scholar
Burtsev, S., Kuzmin, Y.: An efficient flood-filling algorithm. Comput. Graphics 17(5), 549–561 (1993). http://www.sciencedirect.com/science/article/pii/009784939390006U
CrossRef
Google Scholar
Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory Comput. 8(19), 415–428 (2012). http://www.theoryofcomputing.org/articles/v008a019
MathSciNet
CrossRef
Google Scholar
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)