Skip to main content

From Simple Cylinder to Four-Chambered Organ: A Brief Overview of Cardiac Morphogenesis

  • Chapter
  • First Online:
Advanced Technologies in Cardiovascular Bioengineering

Abstract

CHDs are the most common type of birth defects, accounting for approximately 13% of deaths in the US in 2017, or 365,914 deaths. In considering the origins of CHDs and related malformations, a fundamental understanding of cardiac growth and morphogenesis is requisite. This article reviews the salient morphogenic phases of the developing heart, beginning with the incipience of the two embryonic axes and concluding with the completion of complex septation and trabeculation processes that characterize the mature embryonic heart. We also discuss the origins of four major cardiac lineages, namely derivatives of the FHF, SHF, PEO, and cNCC progenitors. In this article, we have chosen to focus on the murine model of cardiac development due to its similarity to human models and popularity in recent and ongoing embryology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virani, S., Alonso, A., Benjamin, E., Bittencourt, M., Callaway, C., Carson, A., et al.: Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation (New York, NY). 141(9), e139–ee51 (2020). https://doi.org/10.1161/CIR.0000000000000757

    Article  Google Scholar 

  2. Galdos, F.X., Wu, S.M.: Development of cardiac muscle. Elsevier Inc (2015)

    Google Scholar 

  3. Zaffran, S., Meilhac, S., Buckingham, M.: Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6(11), 826–837 (2005). https://doi.org/10.1038/nrg1710

    Article  Google Scholar 

  4. Hill, M.A., Aug. Cardiac Embryology (2020)

    Google Scholar 

  5. Lin, C.-J., Lin, C.-Y., Chen, C.-H., Zhou, B., Chang, C.-P.: Partitioning the heart: mechanisms of cardiac septation and valve development. Development. 139(18), 3277–3299 (2012). https://doi.org/10.1242/dev.063495

    Article  Google Scholar 

  6. Ivanovitch, K., Temiño, S., Torres, M.: Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. Elife. 6 (2017). https://doi.org/10.7554/elife.30668

  7. Tyser, R.C.V., Miranda, A.M.A., Chen, C.-M., Davidson, S.M., Srinivas, S., Riley, P.R.: Calcium handling precedes cardiac differentiation to initiate the first heartbeat. Elife. 5 (2016). https://doi.org/10.7554/elife.17113

  8. Goodyer, W.R., Wu, S.M.: Fates aligned: origins and mechanisms of ventricular conduction system and ventricular wall development. Pediatr. Cardiol. 39(6), 1090–1098 (2018). https://doi.org/10.1007/s00246-018-1869-9

    Article  Google Scholar 

  9. Christoffels, V., Moorman, A.: Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circ. Arrhythm. Electrophysiol. 2(2), 195–207 (2009). https://doi.org/10.1161/CIRCEP.108.829341

    Article  Google Scholar 

  10. de Boer, B.A., van den Berg, G., de Boer, P.A.J., Moorman, A.F.M., Ruijter, J.M.: Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas. Dev. Biol. 368(2), 203–213 (2012). https://doi.org/10.1016/j.ydbio.2012.05.001

    Article  Google Scholar 

  11. Hanson, K.P., Jung, J.P., Tran, Q.A., Hsu, S.-P.P., Iida, R., Ajeti, V., et al.: Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng. Part A. 19(9–10), 1132–1143 (2013). https://doi.org/10.1089/ten.tea.2012.0316

    Article  Google Scholar 

  12. Vincent, S.D., Buckingham, M.E.: How to make a heart: the origin and regulation of cardiac progenitor cells. Curr. Top. Dev. Biol. 90, 1–41 (2010). https://doi.org/10.1016/S0070-2153(10)90001-X

    Article  Google Scholar 

  13. Simões, F.C., Riley, P.R.: The ontogeny, activation and function of the epicardium during heart development and regeneration. Development (Cambridge). 145(7), dev155994 (2018). https://doi.org/10.1242/dev.155994

    Article  Google Scholar 

  14. Liang, S., Shi, X., Yu, C., Shao, X., Zhou, H., Li, X., et al.: Identification of novel candidate genes in heterotaxy syndrome patients with congenital heart diseases by whole exome sequencing. Biochim. Biophys. Acta Mol. basis Dis. 2020(12), 165906 (1866). https://doi.org/10.1016/j.bbadis.2020.165906

    Article  Google Scholar 

  15. Kim, D.H., Xing, T., Yang, Z., Dudek, R., Lu, Q., Chen, Y.-H.: Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J. Clin. Med. 7(1), 1 (2017). https://doi.org/10.3390/jcm7010001

    Article  Google Scholar 

  16. Zhou, B., Pu, W.T.: More than a cover: epicardium as a novel source of cardiac progenitor cells. Regen. Med. 3(5), 633–635 (2008). https://doi.org/10.2217/17460751.3.5.633

    Article  Google Scholar 

  17. Young, K.A., Wise, J.A., DeSaix, P., Kruse, D.H., Poe, B., Johnson, E., et al.: Anatomy and physiology, 1st edn, p. 1335. OpenStax (2013)

    Google Scholar 

  18. Anderson, R.H., Mori, S., Spicer, D.E., Brown, N.A., Mohun, T.J.: Development and morphology of the ventricular outflow tracts. World J. Pedia. & Congenit. Heart Surg. 7(5), 561–577 (2016). https://doi.org/10.1177/2150135116651114

    Article  Google Scholar 

  19. Mirzoyev, S., McLeod, C.J., Asirvatham, S.J.: Embryology of the conduction system for the electrophysiologist. Ind. Pacing & Electrophysiol J. 10(8), 329–338 (2010)

    Google Scholar 

  20. Markwald, R.R., Fitzharris, T.P., Manasek, F.J.: Structural development of endocardial cushions. Am. J. Anat. 148(1), 85–119 (1977). https://doi.org/10.1002/aja.1001480108

    Article  Google Scholar 

  21. Snarr, B.S., Kern, C.B., Wessels, A.: Origin and fate of cardiac mesenchyme. Dev. Dyn. 237(10), 2804–2819 (2008). https://doi.org/10.1002/dvdy.21725

    Article  Google Scholar 

  22. Krishnan, A., Samtani, R., Dhanantwari, P., Lee, E., Yamada, S., Shiota, K., et al.: A detailed comparison of mouse and human cardiac development. Pediatr. Res. 76(6), 500–507 (2014). https://doi.org/10.1038/pr.2014.128

    Article  Google Scholar 

  23. Lockhart, M.M., van den Hoff, M., Wessels, A., Nakanishi, T., Markwald, R.R., Baldwin, H.S., et al.: The role of the epicardium in the formation of the cardiac valves in the mouse, pp. 161–170. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology. Springer Open (2016)

    Google Scholar 

  24. Possner, M., Gensini, F.J., Mauchley, D.C., Krieger, E.V., Steinberg, Z.L.: Ebstein’s anomaly of the tricuspid valve: an overview of pathology and management. Curr. Cardiol. Rep. 22(12), 157 (2020). https://doi.org/10.1007/s11886-020-01412-z

    Article  Google Scholar 

  25. Obgynkey.com; Cardiac Development, Cardac Septation. Chapter 414.3.

    Google Scholar 

  26. Hatcher, C.J., Basson, C.T.: Specification of the cardiac conduction system by transcription factors. Circ. Res. 105(7), 620–630 (2009). https://doi.org/10.1161/CIRCRESAHA.109.204123

    Article  Google Scholar 

  27. Wu, B., Zhang, Z., Lui, W., Chen, X., Wang, Y., Chamberlain, A.A., et al.: Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell (Cambridge). 151(5), 1083–1096 (2012). https://doi.org/10.1016/j.cell.2012.10.023

    Article  Google Scholar 

  28. Red-Horse, K., Ueno, H., Weissman, I.L., Krasnow, M.A.: Coronary arteries form by developmental reprogramming of venous cells. Nature (London). 464(7288), 549–553 (2010). https://doi.org/10.1038/nature08873

    Article  Google Scholar 

  29. Su, T., Stanley, G., Sinha, R., D’Amato, G., Das, S., Rhee, S., et al.: Single-cell analysis of early progenitor cells that build coronary arteries. Nature (London). 559(7714), 356–362 (2018). https://doi.org/10.1038/s41586-018-0288-7

    Article  Google Scholar 

  30. Diman, N., Brooks, G., Kruithof, B., Elemento, O., Seidman, J.G., Seidman, C., et al.: Tbx5 is required for avian and mammalian epicardial formation and coronary Vasculogenesis. Circ. Res. 115(10), 834–844 (2014). https://doi.org/10.1161/CIRCRESAHA.115.304379

    Article  Google Scholar 

  31. Kovacic, J.C., Dimmeler, S., Harvey, R.P., Finkel, T., Aikawa, E., Krenning, G., et al.: Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73(2), 190–209 (2019). https://doi.org/10.1016/j.jacc.2018.09.089

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carissa Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, C., Paige, S.L., Galdos, F.X., Wei, N., Wu, S.M. (2022). From Simple Cylinder to Four-Chambered Organ: A Brief Overview of Cardiac Morphogenesis. In: Zhang, J., Serpooshan, V. (eds) Advanced Technologies in Cardiovascular Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-86140-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86140-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86139-1

  • Online ISBN: 978-3-030-86140-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics