Skip to main content

PM2.5 and PM10 Concentration Estimation Based on the Top-of-Atmosphere Reflectance

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

Abstract

Estimating ground-level PM2.5/10 based on satellite aerosol optical depth (AOD) products is a research hotspot at home and abroad. It has large area and high-density coverage characteristics, making up for the lack of ground monitoring stations. The AOD products are usually retrieved from top-of-atmosphere (TOA) reflectance via an atmospheric radiative transfer model. However, the strict surface assumptions in the AOD retrieval process make it impossible to retrieve AOD effectively in specific regions or periods. Therefore, this paper proposes a method based on machine learning to estimate ground-level PM2.5/10 concentration using TOA reflectance, observation angles and meteorological data, called TOA-PM2.5/10 model, and compares it with the AOD-PM2.5/10 model, whose inputs are AOD data and meteorological data. The comparative results show that the R2, RMSE, and MAE of PM2.5/10 concentration estimated using the TOA-PM2.5/10 model can reach 0.888, 6.158, 3.580 for PM2.5 and 0.889, 13.887, 8.141 for PM10 respectively, which is superior to that of the AOD-PM2.5/10 model.

This work is supported in part by the National Key R&D Program of China under Grant 2019YFB2102002, and in part by the Collaborative Innovation Center of Novel Software Technology and Industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gan, T., Liang, W., Yang, H., Liao, X.: The effect of economic development on haze pollution (pm2.5) based on a spatial perspective: urbanization as a mediating variable. J. Clean. Prod. 266, 121880 (2020)

    Google Scholar 

  2. Domingo, J.L., Rovira, J.: Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res. 187, 109650 (2020)

    Google Scholar 

  3. Fanny, W., Ko, S., David, S., Hui, C.: Air pollution and chronic obstructive pulmonary disease. Respirology 17(3), 395--401 (2012)

    Google Scholar 

  4. Wang, J., Christopher, S.A.: Intercomparison between satellite-derived aerosol optical thickness and pm2.5 mass: implications for air quality studies. Geophys. Res. Lett. 30(21) (2003)

    Google Scholar 

  5. Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y., Kumar, N.: Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40(30), 5880–5892 (2006)

    Article  Google Scholar 

  6. Ghotbi, S., Sotoudeheian, S., Arhami, M.: Estimating urban ground-level pm10 using modis 3km aod product and meteorological parameters from wrf model. Atmospheric Environment, pp. 333--346 (2016)

    Google Scholar 

  7. Yang, L., Park, R.J., Jacob, D.J., Qinbin, L.: Mapping annual mean ground-level pm2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous united states. J. Geophys. Res. Atmospheres 109(D22) (2004)

    Google Scholar 

  8. Hu, X., et al.: Estimating ground-level pm2.5 concentrations in the southeastern u.s. using geographically weighted regression. Environ. Res. 121, 1–10 (2013)

    Google Scholar 

  9. Yu, W., Liu, Y., Ma, Z., Bi, J: Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.: Sci. Rep. 7(1), 2045–2322 (2017)

    Google Scholar 

  10. Liu, Y., Cao, G., Zhao, N., Mulligan, K., Ye, X.: Improve ground-level pm2.5 concentration mapping using a random forests-based geostatistical approach. Environmental Pollution (2018)

    Google Scholar 

  11. Li, T., Shen, H., Yuan, Q., Zhang, X., Zhang, L.: Estimating ground-level pm2.5 by fusing satellite and station observations: A geo-intelligent deep learning approach. Geophys. Res. Lett. 44(23), 11985–11993 (2017)

    Google Scholar 

  12. Ferrero, L., et al.: Satellite aod conversion into ground pm10, pm2.5 and pm1 over the po valley (milan, italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology. Atmospheric Pollution Res. 10(6), 1895–1912 (2019)

    Google Scholar 

  13. Kaufman, Y.J., Tanré, D., Remer, L.A., Vermote, E.F., Chu, A., Holben, B.N.: Operational remote sensing of tropospheric aerosol over land from eos moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmospheres 102(D14), 51–17 (1997)

    Google Scholar 

  14. Levy, R.C., et al.: Global evaluation of the collection 5 modis dark-target aerosol products over land. Atmospheric Chemistry and Physics (2010)

    Google Scholar 

  15. Decker, M., Brunke, M.A., Wang, Z., Sakaguchi, K., Zeng, X., Bosilovich, M.G.: Evaluation of the reanalysis products from gsfc, ncep, and ecmwf using flux tower observations. J. Clim. 25(6), 1916–1944 (2010)

    Article  Google Scholar 

  16. Chen, Q.M., Song, S.L., Zhu, W.Y.: An analysis for the accuracy of tropospheric zenith delay calculated from ecmwf/ncep data over asia. Chin. J. Geophys. 55(3), 275–283 (2012)

    Article  Google Scholar 

  17. Fang, X., Zou, B., Liu, X., Sternberg, T., Zhai, L.: Satellite-based ground pm2.5 estimation using timely structure adaptive modeling. Remote Sens. Environ. 186, 152--163 (2016)

    Google Scholar 

  18. Agarwal, S., Chowdary, C.R.: A-stacking and a-bagging: adaptive versions of ensemble learning algorithms for spoof fingerprint detection. Expert Syst. Appl. 146, 113160 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Hao, J., Xu, W. (2021). PM2.5 and PM10 Concentration Estimation Based on the Top-of-Atmosphere Reflectance. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics