Skip to main content

Reinforcement Learning Based Sensor Encryption and Power Control for Low-Latency WBANs

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12938))

Abstract

Healthcare sensing data in wireless body area networks are vulnerable to active eavesdropping that simultaneously performs sniffing and jamming attacks to raise the sensor transmit power and thus steal more data. In this paper, we propose a reinforcement learning based sensor encryption and power control scheme to resist active eavesdropping for low-latency wireless body area networks. This scheme enables the coordinator to jointly optimize the sensor encryption key size and the transmit power based on the sensing data priority, the jamming power and the channel states of the sensor. We design a safe exploration algorithm based on the Dyna architecture to avoid choosing the encryption and power control policies that result in data transmission failure or data leakage. A secure sensing data transmission game between the coordinator and the eavesdropper is formulated to analyze the performance bound of our proposed scheme in terms of the signal-to-interference-plus-noise ratio of sensor signals, the eavesdropping rate, the energy consumption and the transmission latency based on the Nash Equilibrium of the game. Simulation results show that this scheme significantly decreases the eavesdropping rate and the transmission latency, and saves the sensor energy compared with the benchmark against active eavesdropping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, D., Zeadally, S., Kumar, N., Lee, J.-H.: Anonymous authentication for wireless body area networks with provable security. IEEE Syst. J. 11(4), 2590–2601 (2017)

    Article  Google Scholar 

  2. Tang, X., Ren, P., Wang, Y., Han, Z.: Combating full-duplex active eavesdropper: a hierarchical game perspective. IEEE Trans. Commun. 65(3), 1379–1395 (2017)

    Article  Google Scholar 

  3. Osorio, D.P.M., Alves, H., Olivo, E.E.B.: On the secrecy performance and power allocation in relaying networks with untrusted relay in the partial secrecy regime. IEEE Trans. Inf. Forensics Secur. 1(15), 2268–2281 (2019)

    Google Scholar 

  4. Zhang, H., Xing, H., Cheng, J., Nallanathan, A., Leung, V.C.M.: Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Trans. Ind. Informat. 12(5), 1714–1725 (2016)

    Article  Google Scholar 

  5. Hamamreh, J.M., Furqan, H.M., Arslan, H.: Classifications and applications of physical layer security techniques for confidentiality: a comprehensive survey. IEEE Commun. Surveys Tuts. 21(2), 1773–1828 (2018)

    Article  Google Scholar 

  6. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks, IEEE Std. 802.15.6-2012 (2012)

    Google Scholar 

  7. Dautov, R., Tsouri, G.R.: Securing while sampling in wireless body area networks with application to electrocardiography. IEEE J. Biomed. Health Inform. 20(1), 135–142 (2016)

    Article  Google Scholar 

  8. Xiao, L., Sheng, G., Liu, S., Dai, H., Peng, M., Song, J.: Deep reinforcement learning-enabled secure visible light communication against eavesdropping. IEEE Trans. Commun. 67(10), 6994–7005 (2019)

    Article  Google Scholar 

  9. Do, Q.V., Hoan, T., Koo, I.: Optimal power allocation for energy-efficient data transmission against full-duplex active eavesdroppers in wireless sensor networks. IEEE Sensors J. 9(13), 5333–5346 (2019)

    Article  Google Scholar 

  10. Sawan, M., Salam, M.T., Lan, J.L., et al.: Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices. IEEE Trans. Biomed. Circuits Sys. 7(2), 186–195 (2013)

    Article  Google Scholar 

  11. Zhou, X., Maham, B., Hjorungnes, A.: Pilot contamination for active eavesdropping. IEEE Trans. Wireless Commun. 11(3), 903–907 (2012)

    Article  Google Scholar 

  12. Chorti, A., Perlaza, S.M., Han, Z., Poor, H.V.: On the resilience of wireless multiuser networks to passive and active eavesdroppers. IEEE J. Sel. Areas Commun. 31(9), 1850–1863 (2013)

    Article  Google Scholar 

  13. Min, M., et al.: Learning-based privacy-aware offloading for healthcare IoT with energy harvesting. IEEE Internet Things J. 6(3), 4307–4316 (2019)

    Article  Google Scholar 

  14. Moosavi, H., Bui, F.M.: Delay-aware optimization of physical layer security in multi-hop wireless body area networks. IEEE Trans. Inf. Forensics Secur. 11(9), 1928–1939 (2016)

    Article  Google Scholar 

  15. Bertrand, A.: Distributed signal processing for wireless EEG sensor networks. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 923–935 (2015)

    Article  Google Scholar 

  16. Liu, Z., Huang, X., Hu, Z., Khan, M.K., Seo, H., Zhou, L.: On emerging family of elliptic curves to secure Internet of Things: ECC comes of age. IEEE Trans. Dependable Secure Comput. 14(3), 237–248 (2017)

    Google Scholar 

  17. Zang, W., Zhang, S., Li, Y.: An accelerometer-assisted transmission power control solution for energy-efficient communications in WBAN. IEEE J. Sel. Areas Commun. 34(12), 3427–3437 (2016)

    Article  Google Scholar 

  18. Liu, Z., Liu, B., Chen, C.W.: Joint power-rate-slot resource allocation in energy harvesting-powered wireless body area networks. IEEE Trans. Veh. Technol. 67(12), 12152–12164 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 61971366 and Grant 61731012, and in part by the Fundamental Research Funds for the central universities No. 20720200077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, S., Lu, X., Xiao, L., Niu, G., Yang, H. (2021). Reinforcement Learning Based Sensor Encryption and Power Control for Low-Latency WBANs. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics