Skip to main content

A Runtime Safety Enforcement Approach by Monitoring and Adaptation

  • Conference paper
  • First Online:
Book cover Software Architecture (ECSA 2021)

Abstract

The use of models and formal analysis techniques at runtime is fundamental to address safety assurance during the system operational stage, when all relevant uncertainties and unknowns can be resolved. This paper presents a novel approach to runtime safety enforcement of software systems based on the MAPE-K control loop architecture for system monitoring and control, and on the Abstract State Machine as runtime model representing the enforcement strategy aimed at preserving or eventually restoring safety. The enforcer software is designed as an autonomic manager that wraps around the software system to monitor and manage unsafe system changes using probing and effecting interfaces provided by the system, so realising grey-box safety enforcement. The proposed approach is supported by a component framework that is here illustrated by means of a case study in the health-care domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The framework is available within the ASMETA GitHub repository https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.enforcer.

  2. 2.

    The concrete component classes implement the basic abstract methods and override the hook methods of the framework’s abstract classes to add specific behaviours.

  3. 3.

    https://github.com/asmeta/MRM.

References

  1. Andersson, B., Chaki, S., de Niz, D.: Combining symbolic runtime enforcers for cyber-physical systems. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 68–84. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_5

    Chapter  Google Scholar 

  2. Andersson, J., Grassi, V., Mirandola, R., Perez-Palacin, D.: A conceptual framework for resilience: fundamental definitions, strategies and metrics. Computing 103(4), 559–588 (2020)

    Article  MathSciNet  Google Scholar 

  3. Arcaini, P., Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E., Scandurra, P.: The ASMETA approach to safety assurance of software systems. In: Raschke, A., Riccobene, E., Schewe, K.-D. (eds.) Logic, Computation and Rigorous Methods. LNCS, vol. 12750, pp. 215–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76020-5_13

    Chapter  Google Scholar 

  4. Arcaini, P., Mirandola, R., Riccobene, E., Scandurra, P.: MSL: a pattern language for engineering self-adaptive systems. J. Syst. Softw. 164, 110558 (2020)

    Article  Google Scholar 

  5. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feedback loops for self-adaptation. In: Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. ACM (2015)

    Google Scholar 

  6. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst. 11(4), 1–35 (2017)

    Article  Google Scholar 

  7. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from abstract state machines to embedded systems: a smart pill box case study. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS, vol. 11771, pp. 89–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29852-4_7

    Chapter  Google Scholar 

  8. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code generator from abstract state machines specifications. J. Softw. Evol. Process 32(2), e2205 (2020)

    Article  Google Scholar 

  9. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

    Book  Google Scholar 

  10. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engineering trustworthy self-adaptive software with dynamic assurance cases. IEEE Trans. Software Eng. 44(11), 1039–1069 (2018)

    Article  Google Scholar 

  11. Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21292-5_7

    Chapter  Google Scholar 

  12. Camilli, M., Gargantini, A., Scandurra, P.: Model-based hypothesis testing of uncertain software systems. Softw. Test. Verification Reliab. 30(2), e1730 (2020)

    Google Scholar 

  13. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: SOTER: a runtime assurance framework for programming safe robotics systems. In: 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (2019)

    Google Scholar 

  14. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospective. In: Proceedings of the 1999 Workshop on New Security Paradigms. NSPW 1999. Association for Computing Machinery (1999)

    Google Scholar 

  15. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_4

    Chapter  Google Scholar 

  16. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composition, synthesis, and enforcement abilities. Formal Methods Syst. Des. 38(3), 223–262 (2011)

    Article  Google Scholar 

  17. Fernandez, E.B., Hamid, B.: Two safety patterns: safety assertion and safety assertion enforcer. In: Proceedings of the 22nd European Conference on Pattern Languages of Programs. EuroPLoP 2017. Association for Computing Machinery (2017)

    Google Scholar 

  18. Garlan, D., Schmerl, B.R., Cheng, S.: Software architecture-based self-adaptation. In: Zhang, Y., Yang, L., Denko, M. (eds.) Autonomic Computing and Networking, pp. 31–55. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89828-5_2

    Chapter  Google Scholar 

  19. He, Y., Schumann, J.: A framework for the analysis of adaptive systems using Bayesian statistics. In: Proceedings of the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (2020)

    Google Scholar 

  20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  21. Lutz, R.R.: Software engineering for safety: a roadmap. In: Proceedings of the Conference on the Future of Software Engineering. ICSE 2000. Association for Computing Machinery (2000)

    Google Scholar 

  22. de Niz, D., Andersson, B., Moreno, G.: Safety enforcement for the verification of autonomous systems. In: Dudzik, M.C., Ricklin, J.C. (eds.) Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything, vol. 10643. International Society for Optics and Photonics, SPIE (2018)

    Google Scholar 

  23. Riccobene, E., Scandurra, P.: A formal framework for service modeling and prototyping. Formal Aspects Comput. 26(6), 1077–1113 (2014)

    Article  MathSciNet  Google Scholar 

  24. Riccobene, E., Scandurra, P.: Exploring the concept of abstract state machines for system runtime enforcement. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 244–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6_18

    Chapter  Google Scholar 

  25. Riccobene, E., Scandurra, P.: Model-based simulation at runtime with abstract state machines. In: Muccini, H., et al. (eds.) ECSA 2020. CCIS, vol. 1269, pp. 395–410. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59155-7_29

    Chapter  Google Scholar 

  26. Riganelli, O., Micucci, D., Mariani, L.: Policy enforcement with proactive libraries. In: 12th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems. IEEE Computer Society (2017)

    Google Scholar 

  27. Riganelli, O., Micucci, D., Mariani, L.: Controlling interactions with libraries in android apps through runtime enforcement. ACM Trans. Auton. Adapt. Syst. 14(2), 1–29 (2019)

    Article  Google Scholar 

  28. Trapp, M., Schneider, D.: Safety assurance of open adaptive systems – a survey. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 279–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08915-7_11

    Chapter  Google Scholar 

  29. Weyns, D., Iftikhar, M.U.: Model-based simulation at runtime for self-adaptive systems. In: Kounev, S., Giese, H., Liu, J. (eds.) 2016 IEEE International Conference on Autonomic Computing, ICAC 2016. IEEE Computer Society (2016)

    Google Scholar 

  30. Wu, M., Zeng, H., Wang, C., Yu, H.: Safety guard: runtime enforcement for safety-critical cyber-physical systems: invited. In: Proceedings of the 54th Annual Design Automation Conference. ACM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Scandurra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonfanti, S., Riccobene, E., Scandurra, P. (2021). A Runtime Safety Enforcement Approach by Monitoring and Adaptation. In: Biffl, S., Navarro, E., Löwe, W., Sirjani, M., Mirandola, R., Weyns, D. (eds) Software Architecture. ECSA 2021. Lecture Notes in Computer Science(), vol 12857. Springer, Cham. https://doi.org/10.1007/978-3-030-86044-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86044-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86043-1

  • Online ISBN: 978-3-030-86044-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics