Skip to main content

Historical Background of Diabetic Kidney Disease

  • Chapter
  • First Online:
Diabetes and Kidney Disease

Abstract

This chapter presents an overview of the background history of diabetic kidney disease. The discovery of diabetic kidney disease took place over a century ago and its definition has changed considerably over time. Initial studies of kidney biopsies, radioimmunoassay, and the concept of micro- and macroalbuminuria are highlighted, as well as the discovery of the renin–angiotensin–aldosterone system (RAAS). Landmark trials focusing on how diabetic kidney disease could be improved using pharmacologic blockade of RAAS are reviewed. In addition, novel therapeutics specifically targeting the kidneys have been shown through multiple clinical trials to slow the progression of chronic kidney disease and are also discussed here.

Diabetes is still the most common cause of end-stage renal disease in Western countries, and research highlighting their overall success in treating diabetes and its major complications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By injecting radioactive iodine, they were able to track insulin and prove that type 2 diabetes is due to an inefficient use of insulin. This discovery awarded them a Nobel Prize.

References

  1. Krall LP, Levine R, Barnett D. The history of diabetes. In: Kahn CR, Weir GC, editors. Joslin’s diabetes mellitus. Philadelphia: Lea & Febiger; 1994.

    Google Scholar 

  2. Aretaeus, De causis et signis acutorum morborum (lib. 2) Francis Adams LL.D., Ed.

    Google Scholar 

  3. Stewart CJ. The discovery of diabetic nephropathy: from small print to Centre stage. J Nephrol. 2006;10:S75.

    Google Scholar 

  4. Darwin E. Zoonomia (The Laws of Organic Life). 1801.

    Google Scholar 

  5. Cotunnius D. De Ischiade Nervosa. Vienna, 1770.

    Google Scholar 

  6. Rollo J. Cases of the diabetes mellitus. 2nd ed. London: Dilly; 1798.

    Google Scholar 

  7. Cameron JS, Ireland JT, Watkins PJ. The kidney and renal tract. In: Keen HF, Jarrett J, editors. Complications of diabetes. London: Edward Arnold Ltd.; 1975. p. 99.

    Google Scholar 

  8. Rayer P. In: Traite des Maladies du Rein, Vol. 2. Baillere, Tindall, and. Cox, editors. Paris; 1840.

    Google Scholar 

  9. Griesinger W. Studien uber diabetes. Archiv Physiologie Heilkunde. 1859;3:1–75.

    Google Scholar 

  10. Ebstein W. Weiteres über Diabetes mellitus, insbesondere über die Complicationdesselben mit Typhus abdominalis. Deutsch Arch fklin Med. 1882;30:1–44.

    Google Scholar 

  11. Waku K. Ueber die Verunderung der Glomeruli der Diabetesniere. Tr Jap Path Soc. 1928;18:413–6.

    Google Scholar 

  12. Kimmelstiel P, Wilson C. Intercapillary lesions in glomeruli of kidney. Am J Pathol. 1936;12:83.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen AC. So-called intercapillary glomerulosclerosis—a lesion associated with diabetes. Arch Pathol. 1941;32:33–51.

    Google Scholar 

  14. Foggensteiner L, Mulroy S, Firth J. Management of diabetic nephropathy. J R Soc Med. 2001;94(5):210–7. https://doi.org/10.1177/014107680109400504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iversen P, Brun C. Aspiration biopsy of the kidney. Am J Med. 1951;11(3):324–30.

    CAS  PubMed  Google Scholar 

  16. Gellman DD, Pirani CL, Soothill JF, Muehrcke RC, Kark RM. Diabetic nephropathy. A clinical and pathologic study based on renal biopsies. Medicine (Baltimore). 1959;38:321–67.

    CAS  Google Scholar 

  17. Irvine E, Rinehart JF, Mortimore GE, Hopper JJ. The ultrastructure of the renal glomerulus in intercapillary glomerulosclerosis. Am J Pathol. 1956;32:647–53.

    Google Scholar 

  18. Østerby-Hansen R. A quantitative estimate of the peripheral glomerular basement membrane in recent juvenile diabetes. Diabetologia. 1965;1:97–100.

    Google Scholar 

  19. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Keen H, Chlouverakis C. An immunoassay method for urinary albumin in low concentrations. Lancet. 1963;ii:913–6.

    Google Scholar 

  21. Viberti GC, Hill RD, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetics. Lancet. 1982;i:1430–2.

    Google Scholar 

  22. Mogensen DE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310:356–60.

    CAS  PubMed  Google Scholar 

  23. Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J. 1982;285:685–8.

    CAS  Google Scholar 

  24. American Diabetes Association. Hypertension management in adults with diabetes. Diabetes Care. 2004;27(Suppl 1):S65–7.

    Google Scholar 

  25. Basso N, Terragno NA. History about the discovery of the renin-angiotensin system. Hypertension. 2001;38:1246–9.

    CAS  PubMed  Google Scholar 

  26. Kofoed-Enevoldsen A, Borch-Johnsen K, Kreiner S, Nerup J, Deckert T. Declining incidence of persistent proteinuria in type I (insulin-dependent) diabetics. Diabetes. 1987;36:205–9.

    CAS  PubMed  Google Scholar 

  27. Krolewski AS, Warram JH, Chriestleib AR, Busick EJ, Kathan CR. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78:785–94.

    CAS  PubMed  Google Scholar 

  28. Zatz R, Brenner BM. Pathogenesis of diabetic nephropathy. The hemodynamic view. Am J Med. 1985;80:443–53.

    Google Scholar 

  29. Marre M, Chatellier G, Leblanc H, Guyene TT, Menard J, Passa P. Prevention of diabetic nephropathy with enalapril in normotensive diabetics with microalbuminuria. Br Med J. 1988;297:1092–5.

    CAS  Google Scholar 

  30. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. For the collaborative study group. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456–62.

    CAS  PubMed  Google Scholar 

  31. Lewis EJ, Hunsicker LG, Clarke WR, et al. For the collaborative study group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    CAS  PubMed  Google Scholar 

  32. Brenner BM, Cooper ME. de Zeeuw D, et al., for the RENAAL study investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    CAS  PubMed  Google Scholar 

  33. Barnett AH. Inhibition of the renin-angiotensin system in diabetic patients—beyond HOPE. Br J Cardiol. 2004;11:123–7.

    Google Scholar 

  34. Parving H-H, Mauer M, Ritz E. Diabetic nephropathy. In: Brenner BM, editor. Brenner and rector’s the kidney. 7th ed. Philadelphia: WB Saunders; 2004. p. 1777–818.

    Google Scholar 

  35. The EURODIAB IDDM Complications Study Group. Microvascular and acute complications in insulin dependent diabetes mellitus: the EURODIAB IDDM complications study. Diabetologia. 1994;37:278–85.

    Google Scholar 

  36. Steffes MW, Sutherland DER, Goetz FC, Rich SS, Mauer SM. Studies of kidney and muscle biopsy specimens from identical twins discordant for type I diabetes mellitus. N Engl J Med. 1985;312:1282–7.

    CAS  PubMed  Google Scholar 

  37. Mauer SM, Goetz FC, McHugh LE, Sutherland DE, Barbosa J, Najarian JS, Steffes MW. Long-term study of normal kidneys transplanted into patients with type I diabetes. Diabetes. 1989;38:516–23.

    CAS  PubMed  Google Scholar 

  38. Mauer SM, Steffes MW, Connett J, Najarian JS, Sutherland DE, Barbosa J. The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys into diabetic patients. Diabetes. 1983;32:948–52.

    CAS  PubMed  Google Scholar 

  39. Wiseman AC. Pancreas transplant options for patients with type 1 diabetes mellitus and chronic kidney disease: simultaneous pancreas kidney or pancreas after kidney? Curr Opin Organ Transplant. 2012;17(1):80–6.

    PubMed  Google Scholar 

  40. Bohman S-O, Tyden G, Wilczek H, Lundgren G, Jaremko G, Gunnarsson R, Ostman J, Groth G. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes. 1985;34:306–8.

    CAS  PubMed  Google Scholar 

  41. Wilczek HE, Jaremko G, Tyden G, Groth CG. Pancreatic graft protects a simultaneously transplanted kidney from developing diabetic nephropathy: a 1 to 6 year follow-up study. Transplant Proc. 1993;1:1314–5.

    Google Scholar 

  42. Young BY, Gill J, Huang E, et al. Living donor kidney versus simultaneous pancreas-kidney transplant in type I diabetics: an analysis of the OPTN/UNOS database. Clin J Am Soc Nephrol. 2009;4:845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. European Association for the Study of Diabetes (EASD) 48th Annual Meeting: Abstract 149. Presented October 4, 2012.

    Google Scholar 

  44. Melissa Sattley, The history of diabetes mellitus. http://diabeteshealth.com/read/2008/12/17/715/the-history-of-diabetes/ Accessed: May 2013.

    Google Scholar 

  45. Lakhtakia R. The history of diabetes mellitus. Sultan Qaboos Univ Med J. 2013;13(3):368–70.

    PubMed  PubMed Central  Google Scholar 

  46. Diabetes Complications and Control Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications of insulin dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Google Scholar 

  47. UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet. 1998;352:837–53.

    Google Scholar 

  48. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17.

    CAS  PubMed  Google Scholar 

  49. Levin SR, Coburn JW, et al. Effect of intensive glycemic control on microalbuminuria in type 2 diabetes. Veterans affairs cooperative study on glycemic control and complications in type 2 diabetes feasibility trial investigators. Diabetes Care. 2000;23(10):1478–85.

    CAS  PubMed  Google Scholar 

  50. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the diabetes control and complications trial cohort. Diabetes Care. 1999;22(1):99–111.

    Google Scholar 

  51. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus systematic review and meta-analysis. Arch Intern Med. 2012;172(10):761–9.

    PubMed  PubMed Central  Google Scholar 

  52. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in diabetes study group. Type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    CAS  PubMed  Google Scholar 

  53. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    CAS  PubMed  Google Scholar 

  54. Introduction: Standards of Medical Care in Diabetes—2020 Diabetes Care Jan 2020, 43 (Supplement 1) S1-S2; https://doi.org/10.2337/dc20-Sint.

  55. Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. 2018;61:2079–86. https://doi.org/10.1007/s00125-018-4654-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. https://www.niddk.nih.gov/news/archive/2016/story-discovery-sglt2-inhibitors-harnessing-kidneys-help-treat-diabetes.

    Google Scholar 

  57. Perkovic V, Jardine MJ, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306. https://doi.org/10.1056/NEJMoa1811744.

    Article  CAS  PubMed  Google Scholar 

  58. https://www.astrazeneca.com/media-centre/press-releases/2020/farxiga-phase-iii-dapa-ckd-trial-will-be-stopped-early-after-overwhelming-efficacy-in-patients-with-chronic-kidney-disease.html.

    Google Scholar 

  59. Menne J, Dumann E, Haller H, Schmidt BMW. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: a systematic review and meta-analysis. PLoS Med. 2019;16(12):e1002983. https://doi.org/10.1371/journal.pmed.1002983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Woods TC, Satou R, Miyata K, et al. Canagliflozin prevents intrarenal angiotensinogen augmentation and mitigates kidney injury and hypertension in mouse model of type 2 diabetes mellitus. Am J Nephrol. 2019;49(4):331–42. https://doi.org/10.1159/000499597.

    Article  CAS  PubMed  Google Scholar 

  61. Moore B. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J. 1906;1(1):28–38. https://doi.org/10.1042/bj0010028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet. 1964;2(7349):20–1.

    CAS  PubMed  Google Scholar 

  63. Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973;37(5):826–8.

    CAS  PubMed  Google Scholar 

  64. Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature. 1983;302(5910):716–8.

    CAS  PubMed  Google Scholar 

  65. Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79(2):616–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Holst JJ, Orskov C, Nielsen OV, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987;211(2):169–74.

    CAS  PubMed  Google Scholar 

  67. Qualmann C, Nauck MA, Holst JJ, et al. Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1) [7–36 amide] in the fasting state in healthy subjects. Acta Diabetol. 1995;32:13–6. https://doi.org/10.1007/BF00581038.

    Article  CAS  PubMed  Google Scholar 

  68. Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993;36(8):741–4. https://doi.org/10.1007/BF00401145.

    Article  CAS  PubMed  Google Scholar 

  69. Robinson LE, Holt TA, Rees K, et al. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3:e001986. https://doi.org/10.1136/bmjopen-2012-001986.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mann JFE, Fonseca V, Mosenzon O, et al. Effects of Liraglutide versus placebo on cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease. Circulation. 2018;138(25):2908–18. https://doi.org/10.1161/CIRCULATIONAHA.118.036418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.

    CAS  PubMed  Google Scholar 

  72. Hong DS, Kurzrock R, Supko JG, He X, Naing A, Wheler J, et al. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res. 2012;18:3396–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. N Engl J Med 2013; 369:2492-2503. DOI: 10.1056/NEJMoa1306033.

    Google Scholar 

  74. https://doi.org/10.1016/j.kint.2019.05.033.

    Google Scholar 

  75. Tanaka K, Watanabe T, Takeuchi A, Ohashi Y, Nitta K, Akizawa T, et al. Cardiovascular events and death in Japanese patients with chronic kidney disease. Kidney Int. 2017;91:227–34.

    PubMed  Google Scholar 

  76. Cavaiola TS, Pettus JH. Management Of Type 2 Diabetes: Selecting Amongst Available Pharmacological Agents. [Updated 2017 Mar 31]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK425702/

  77. Chan GC, Tang SC. Diabetic nephropathy: landmark clinical trials and tribulations. Nephrol Dial Transplant. 2016;31:359–68.

    CAS  PubMed  Google Scholar 

  78. Bakris GL, et al. Effect of Finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 383:2219–29. https://doi.org/10.1056/NEJMoa2025.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fonseca, V., Bhatnagar, A., Chamarthi, G.D. (2022). Historical Background of Diabetic Kidney Disease. In: Lerma, E.V., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86020-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86020-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86019-6

  • Online ISBN: 978-3-030-86020-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics