Skip to main content

Brains, Behaviour, and Cognition: Multiple Misconceptions

  • Chapter
  • First Online:
Health and Welfare of Captive Reptiles

Abstract

Despite abundant evidence to the contrary, non-avian reptiles are widely considered as behavioural and cognitive underachievers. The persistent myth of the sluggish, primitive, stupid reptile can be traced, at least in part, to long-standing misconceptions about reptilian brain size and organisation. Historically, reptile brains have been considered small and lacking the neural structures that support complex cognition in other vertebrates. In particular, the notion that reptiles lack a cerebral cortex has led to expectations that their behaviour and cognition should be simple and unsophisticated in comparison with birds and mammals. However, it was shown several decades ago that reptiles possess a large pallium comprising three–four distinct cortical areas and a dorsal ventricular ridge that may be functionally equivalent to parts of mammalian neocortex. In fact, forebrain organisation conforms to a common plan in birds and reptiles, which may seem surprising given the recent trend to put the cognitive achievements of birds above those of reptiles yet on a par with mammals. Moreover, the view that reptiles do not exhibit complex cognition faces a growing list of exceptions. Reptiles are capable of spatial, social, reversal, problem-solving, and many other types of learning and cognitively demanding behaviours provided that experimental designs account for some peculiarities of their biology involving their morphology, physiology, and ecology. Unlike frequent caricatures that depict reptiles as clumsy, inflexible, and instinct-driven, much reptile behaviour is precisely performed, delicate in appearance, readily modified, and contextually determined. Recent work has shown that reptiles can show elaborate communication and social systems, parental care, social learning, and play. Although such research is sparse compared to endothermic vertebrates, and the diversity among them immense, captive reptiles also benefit from enrichment, recognise their caretakers individually and form bonds with them, and are affected by early social isolation in ways similar to birds and mammals. Still, the gap between what we know and what we would like to know about reptilian behaviour and cognition is enormous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar PM, Labra A, Niemeyer HM (2009) Chemical self-recognition in the lizard Liolaemus fitzgeraldi. J Ethol 27:181–184

    Article  Google Scholar 

  • Alberts AC (1989) Ultraviolet visual sensitivity in desert iguanas: implications for pheromone detection. Anim Behav 38:129–137

    Article  Google Scholar 

  • Alberts AC (1992) Pheromonal self-recognition in desert iguanas. Copeia 1992:229–232

    Article  Google Scholar 

  • Allen C, Bekoff M (2007) Animal consciousness. In: Velmans M, Schneider S (eds) The Blackwell companion to consciousness. Blackwell, Oxford, pp 58–71

    Chapter  Google Scholar 

  • Amiel JJ, Tingley R, Shine R (2011) Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One 6:e18277

    Article  CAS  Google Scholar 

  • Auersperg AMI, von Bayern AMP, Gajdon GK, Huber L, Kacelnik A (2011) Flexibility in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. PLoS One 6:e20231

    Article  CAS  Google Scholar 

  • Augustine L, Miller K, Burghardt GM (2015) Crocodylus rhombifer (Cuban crocodile): play behavior. Herpetol Rev 46:208–209

    Google Scholar 

  • Ayala-Guerrero F, Calderon A, Perez MC (1988) Sleep patterns in a chelonian reptile (Gopherus flavomarginatus). Physiol Behav 44:333–337

    Article  CAS  Google Scholar 

  • Barabanov V, Gulimova V, Berdiev R, Saveliev S (2015) Object play in thick-toed geckos during a space experiment. J Ethol 33:109–115

    Article  Google Scholar 

  • Barnett KE, Cocroft RB, Fleishman LJ (1999) Possible communication by substrate vibration in a chameleon. Copeia 1999:225–228

    Article  Google Scholar 

  • Bekoff M, Byers JA (1981) A critical reanalysis of the ontogeny and phylogeny of mammalian social and locomotor play: an ethological hornet’s nest. In: Immelmann K, Barlow GW, Petrinovich L, Main M (eds) Behavioral development: the Bielefeld interdisciplinary project. Cambridge University Press, Cambridge, pp 296–337

    Google Scholar 

  • Beltrami G, Bertolucci C, Parretta A, Petrucci F, Foà A (2010) A sky polarization compass in lizards: the central role of the parietal eye. J Exp Biol 213:2048–2054

    Article  CAS  Google Scholar 

  • Benton MJ (1990) Scientific methodologies in collision: the history of the study of the extinction of the dinosaurs. Evol Biol 24:371–400

    Google Scholar 

  • Bitterman ME (1965) Phyletic differences in learning. Am Psychol 20:396–410

    Article  CAS  Google Scholar 

  • Boly M, Seth AK, Wilke M et al (2013) Consciousness in humans and non-human animals: recent advances and future directions. Front Psychol 4:625

    Article  Google Scholar 

  • Briscoe SD, Ragsdale CW (2018) Homology, neocortex, and the evolution of developmental mechanisms. Science 362:190–193

    Article  CAS  Google Scholar 

  • Brown C, Laland K, Krause J (eds) (2011) Fish cognition and behavior, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Bsharry R, Wickler W, Fricke H (2002) Fish cognition; a primate’s eye view. Anim Cogn 5:1–13

    Article  Google Scholar 

  • Bull CM, Gardner MG, Sih A, Spiegel O, Godfrey SS, Leu ST (2017) Why is social behavior rare in reptiles? Lessons from sleepy lizards. Adv Study Behav 49:1–26

    Article  Google Scholar 

  • Burghardt GM (1977a) Learning processes in reptiles. In: Gans C, Tinkle D (eds) Biology of the reptilia, Ecology and behavior, vol 7A. Academic, New York, pp 555–681

    Google Scholar 

  • Burghardt GM (1977b) Of iguanas and dinosaurs: social behavior and communication in neonate reptiles. Am Zool 17:177–190

    Article  Google Scholar 

  • Burghardt GM (1988) Precocity, play, and the ectotherm-endotherm transition: profound reorganisation or superficial adaptation. In: Blass EM (ed) Handbook of behavioral neurobiology, Vol 9, Developmental psychobiology and behavioral ecology. Plenum Publishing Corporation, pp 107–147

    Chapter  Google Scholar 

  • Burghardt GM (1999) Conceptions of play and the evolution of animal minds. Evol Cogn 5:115–123

    Google Scholar 

  • Burghardt GM (2005) The genesis of animal play: testing the limits. MIT Press, Cambridge, MA

    Google Scholar 

  • Burghardt GM (2009) Ethics and animal consciousness: how rubber the ethical ruler. J Soc Issues 65:499–521

    Article  Google Scholar 

  • Burghardt GM (2011) Defining and recognizing play. In: Pellegrini AD (ed) The Oxford handbook of the development of play. Oxford University Press, New York, pp 9–18

    Google Scholar 

  • Burghardt GM (2013) Environmental enrichment and cognitive complexity in reptiles and amphibians: Concepts, review, and implications for captive populations. Appl Anim Behav Sci 147:286–298

    Article  Google Scholar 

  • Burghardt GM (2014) A brief glimpse at the long evolutionary history of play. Anim Behav Cogn 1:90–98

    Article  Google Scholar 

  • Burghardt GM (2015) Play in fishes, frogs, and reptiles. Curr Biol 25:R9–R10

    Article  CAS  Google Scholar 

  • Burghardt GM (2018) Reptile cognition and model species. In: Bueno-Guerra N, Amici F (eds) Field and laboratory methods in animal cognition. Cambridge University Press, Cambridge, pp 407–410

    Google Scholar 

  • Burghardt GM, Bekoff M (2009) Animal consciousness. In: Bayne T, Cleeremans A, Wilkens P (eds) Oxford companion to consciousness. Oxford University Press, Oxford, pp 39–43

    Google Scholar 

  • Burghardt GM, Herzog HA Jr (1980) Beyond conspecifics: is Brer Rabbit our brother. Bioscience 30:763–768

    Article  Google Scholar 

  • Burghardt GM, Layne-Colon DG (2023) Effects of ontogeny, rearing conditions, and individual differences on behaviour: welfare, conservation, and invasive species implications, Chap. 9. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 287–322. ISBN 978-3-030-86011-0

    Google Scholar 

  • Burghardt GM, Wilcoxon HC, Czaplicki JA (1973) Conditioning in garter snakes: aversion to palatable prey induced by delayed illness. Anim Learn Behav 1:317–320

    Article  Google Scholar 

  • Burghardt GM, Greene HW, Rand AS (1977) Social behavior in hatchling green iguanas: life at a reptile rookery. Science 195:689–691

    Article  CAS  Google Scholar 

  • Butler AB, Cotterill RMJ (2006) Mammalian and avian neuroanatomy and the question of consciousness in birds. Biol Bull 211:106–127

    Article  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Cabanac M, Cabanac AJ, Parent A (2009) The emergence of consciousness in phylogeny. Behav Brain Res 198:267–272

    Article  Google Scholar 

  • Carazo P, Font E, Desfilis E (2008) Beyond ‘nasty neighbours’ and ‘dear enemies’? Individual recognition by scent marks in a lizard (Podarcis hispanica). Anim Behav 76:1953–1963

    Article  Google Scholar 

  • Chiszar D, Tomlinson WT, Smith HM, Murphy JB, Radcliffe CW (1995) Behavioural consequences of husbandry manipulations: indicators of arousal, quiescence and environmental awareness. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles, 1st edn. Chapman & Hall, London, pp 186–204

    Chapter  Google Scholar 

  • Chittka L (2017) Bee cognition. Curr Biol 27:R1049–R1053

    Article  CAS  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    Article  CAS  Google Scholar 

  • Clark JA, May RM (2002) Taxonomic bias in conservation research. Science 297:191–192

    Article  CAS  Google Scholar 

  • Crowe-Riddell JN, Lillywhite HB (2023) Sensory systems, Chap. 3. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 45–92. ISBN 978-3-030-86011-0

    Google Scholar 

  • Czech B, Krausman PR, Borkhataria R (1998) Social construction, political power, and the allocation of benefits to endangered species. Cons Biol 12:1103–1112

    Article  Google Scholar 

  • Davis KM, Burghardt GM (2007) Training and long-term memory of a novel food acquisition task in a turtle (Pseudemys nelsoni). Behav Proc 75:225–230

    Article  Google Scholar 

  • Davis KM, Burghardt GM (2012) Long-term retention of visual tasks by two species of emydid turtles, Pseudemys nelsoni and Trachemys scripta. J Comp Psychol 126:213–223

    Article  Google Scholar 

  • Dawkins R (1986) The blind watchmaker. Norton, New York

    Google Scholar 

  • Dawkins MS (2017) Animal welfare with and without consciousness. J Zool 301:1–10

    Article  Google Scholar 

  • de Azevedo CS, Cipreste CF, Young RJ (2007) Environmental enrichment: a GAP analysis. Appl Anim Behav Sci 102:329–343

    Article  Google Scholar 

  • Dicke U, Roth G (2016) Neuronal factors determining high intelligence. Philos Trans R Soc B 371:20150180

    Article  Google Scholar 

  • Dinets V (2015) Play behavior in crocodilians. Anim Behav Cogn 2:49–55

    Article  Google Scholar 

  • Dinets V, Brueggen JC, Brueggen JD (2013) Crocodilians use tools for hunting. Ethol Ecol Evol 27:74–78

    Article  Google Scholar 

  • Doody JS (2023) Social behaviour as a challenge for welfare, Chap. 6. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 189–210. ISBN 978-3-030-86011-0

    Google Scholar 

  • Doody JS, Burghardt GM, Dinets V (2013) Breaking the social-non-social dichotomy: a role for reptiles in vertebrate social behavior research? Ethology 119:1–9

    Article  Google Scholar 

  • Doody JS, Dinets V, Burghardt GM (2021) The secret social lives of reptiles. John Hopkins University Press, Baltimore, MD

    Book  Google Scholar 

  • Drummond H, Gordon ER (1979) Luring in the neonate alligator snapping turtle (Macroclemys temminckii): description and experimental analysis. Z Tierpsychol 50:136–152

    Article  Google Scholar 

  • Dugas-Ford J, Ragsdale CW (2015) Levels of homology and the problem of neocortex. Annu Rev Neurosci 38:351–368

    Article  CAS  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    Article  CAS  Google Scholar 

  • Emery NJ, Clayton NS (2005) Evolution of the avian brain and intelligence. Curr Biol 15:R946–R950

    Article  CAS  Google Scholar 

  • Fagen R (1981) Animal play behavior. Oxford University Press, New York

    Google Scholar 

  • Feinberg TE, Mallatt J (2013) The evolution and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Front Psychol 4:1–27

    Article  Google Scholar 

  • Ferrara CR, Vogt RC, Sousa-Lima RS (2013) Turtle vocalizations as the first evidence of posthatching parental care in chelonians. J Comp Psychol 127:24–32

    Article  Google Scholar 

  • Ferrara CR, Vogt RC, Sousa-Lima RS, Tardo BMR, Bernardes VCD (2014) Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica 70:149–156

    Article  Google Scholar 

  • Fleishman LJ (1988) Sensory and environmental influences on display form in Anolis auratus, a grass anole from Panama. Behav Ecol Sociobiol 22:309–316

    Article  Google Scholar 

  • Fleishman LJ, Font E (2019) Sensory processing in relation to signaling behavior. In: Bels VL, Russell AP (eds) Lizard behavior: evolutionary and mechanistic perspectives. CRC Press

    Google Scholar 

  • Foà A, Basaglia F, Beltrami G et al (2009) Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye. J Exp Biol 212:2918–2924

    Article  Google Scholar 

  • Font E (2019) Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis). Behav Proc 169:103963

    Article  Google Scholar 

  • Font E (2020) Squamate cognition. In: Vonk J, Shackelford T (eds) Encyclopedia of animal cognition and behavior. Springer, Cham

    Google Scholar 

  • Font E, García-Roa R, Pincheira-Donoso D, Carazo P (2019) Rethinking the effects of body size on the study of brain size evolution. Brain Behav Evol 93:182–195

    Article  Google Scholar 

  • Gans C (1978) The characteristics and affinities of the Amphisbaenia. Trans Zool Soc Lond 34:347–416

    Article  Google Scholar 

  • Gardner MG, Pearson SK, Johnston GR, Schwarz MP (2015) Group living in squamate reptiles: a review of evidence for stable aggregations. Biol Rev 91:925–936

    Article  Google Scholar 

  • Giles JC, Davis JA (2009) Voice of the turtle: the underwater acoustic repertoire of the long-necked freshwater turtle, Chelodina oblongata. J Acoust Soc Am 126:434–443

    Article  Google Scholar 

  • Gillingham JC (1995) Normal behavior. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles, 1st edn. Chapman & Hall, London, pp 131–164

    Chapter  Google Scholar 

  • Gillingham JC, Clark DL (2023) Normal behaviour, Chap. 5. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 143–188. ISBN 978-3-030-86011-0

    Google Scholar 

  • Greenberg N (1995) Ethologically informed design in husbandry and research. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles, 1st edn. Chapman & Hall, London, pp 239–262

    Chapter  Google Scholar 

  • Greenberg N (2023) Ethologically informed design and DEEP ethology in theory and practice, Chap. 12. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 379–416. ISBN 978-3-030-86011-0

    Google Scholar 

  • Greene HW (2000) Snakes: the evolution of mystery in nature. University of California Press, Los Angeles

    Google Scholar 

  • Güntürkün O, Bugnyar T (2016) Cognition without cortex. Trends Cogn Sci 20:291–303

    Article  Google Scholar 

  • Güntürkün O, Stacho M, Ströckens F (2017) The brains of reptiles and birds. In: Kaas J (ed) Evolution of nervous systems, vol 1, 2nd edn. Elsevier, Oxford, pp 171–221

    Chapter  Google Scholar 

  • Halpern M (1980) The telencephalon of snakes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 257–295

    Chapter  Google Scholar 

  • Hansknecht KA (2008) Lingual luring by mangrove saltmarsh snakes (Nerodia clarkii compressicauda). J Herpetol 42:9–15

    Article  Google Scholar 

  • Healy S, Rowe C (2007) A critique of comparative studies of brain size. Proc R Soc B 274:453–464

    Article  Google Scholar 

  • Heinrich B (1999) Mind of the raven: Investigations and adventures with wolf-birds. Harper Collins, New York

    Google Scholar 

  • Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:1–28

    Article  Google Scholar 

  • Herzog H (2010) Some we love, some we hate, some we eat: why it’s so hard to think straight about animals. Harper, New York

    Google Scholar 

  • Hoare JM, Nelson NJ (2006) Hoplodactylus maculatus (Common Gecko). Social assistance. Herp Rev 37:222–223

    Google Scholar 

  • Holding ML, Frazier JA, Taylor EN, Strand CR (2012) Experimentally altered navigational demands induce changes in the cortical forebrain of free-ranging northern pacific rattlesnakes (Crotalus o. oreganus). Brain Behav Evol 79:144–154

    Article  Google Scholar 

  • Hurlburt GR (1996) Relative brain size in recent and fossil amniotes: determination and interpretation. PhD Dissertation, University of Toronto

    Google Scholar 

  • Iwaniuk AN, Nelson JE (2002) Can endocranial volume be used as an estimate of brain size in birds? Can J Zool 80:16–23

    Article  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  CAS  Google Scholar 

  • Jayne BC, Voris HK, Ng PKL (2002) Snake circumvents constraints on prey size. Nature 418:143

    Article  CAS  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Kalman M (2009) Evolution of the brain: At the reptile-bird transition. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 1305–1312

    Chapter  Google Scholar 

  • Kavanau JL (1997) Origin and evolution of sleep: roles of vision and endothermy. Brain Res Bull 42:245–264

    Article  CAS  Google Scholar 

  • Kean S (2014) The tale of the dueling neurosurgeons: the history of the human brain as revealed by true stories of trauma, madness, and recovery. Little, Brown and Company, New York

    Google Scholar 

  • Kim R, Evans D (2014) Relationships among brain, endocranial cavity, and body sizes in reptiles. Paper presented at the 74th Annual Meeting of the Society of Vertebrate Paleontology, Berlin

    Google Scholar 

  • Kramer M (1989) Individual discrimination in juveniles of two turtles, Pseudemys nelsoni and Pseudemys floridana (Chelonia, Emydidae). Biol Behav 14:148–156

    Google Scholar 

  • Kverkova K, Marhounova L, Polonyiova A et al (2022) The evolution of brain neuron numbers in amniotes. PNAS 119:e2121624119

    Google Scholar 

  • LaDage LD, Riggs BJ, Sinervo B, Pravosudov VV (2009) Dorsal cortex volume in male side-blotched lizards, Uta stansburiana, is associated with different space use strategies. Anim Behav 78:91–96

    Article  Google Scholar 

  • LaDage LD, Roth TC, Cerjanic AM, Sinervo B, Pravosudov VV (2012) Spatial memory: are lizards really deficient? Biol Lett 8:939–941

    Article  CAS  Google Scholar 

  • Lapiedra O, Schoener TW, Leal M, Losos JB, Kolbe JJ (2018) Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360:1017–1020

    Article  CAS  Google Scholar 

  • Leal M, Powell BJ (2012a) Behavioural flexibility and problem-solving in a tropical lizard. Biol Lett 8:28–30

    Article  Google Scholar 

  • Leal M, Powell BJ (2012b) On the flexibility of lizards’ cognition: a response to Vasconcelos et al. Biol Lett 8:44–45

    Article  Google Scholar 

  • Leal M, Thomas R (1994) Notes on the feeding behavior and the exhibit of caudal luring by juvenile Alsophis portoricensis (Serpentes: Colubridae). J Herpetol 28:126–128

    Article  Google Scholar 

  • Leal M, Knox AK, Losos JB (2002) Lack of convergence in aquatic Anolis lizards. Evolution 56:785–791

    Google Scholar 

  • Leighty KA, Grand AP, Pittman Courte VL et al (2013) Relational responding by eastern box turtles (Terrapene carolina) in a series of color discrimination tasks. J Comp Psychol 127:256–264

    Article  Google Scholar 

  • Leu ST, Burzacott D, Whiting MJ, Bull CM (2015) Mate familiarity affects pairing behaviour in a long-term monogamous lizard: Evidence from detailed bio-logging and a 31 year field study. Ethology 121:760–768

    Article  Google Scholar 

  • Libourel P-A, Herrel A (2016) Sleep in amphibians and reptiles: a review and a preliminary analysis of evolutionary patterns. Biol Rev 91:833–866

    Article  Google Scholar 

  • Libourel P-A, Barrillot B, Arthaud S, Massot B, Morel A-L, Beuf O, Herrel A, Luppi P-H (2018) Partial homologies between sleep states in lizards, mammals, and birds suggest a complex evolution of sleep states in amniotes. PLoS Biol 16:e2005982

    Article  Google Scholar 

  • Lillywhite HB (2023) Physiology and functional anatomy, Chap. 2. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 7–44. ISBN 978-3-030-86011-0

    Google Scholar 

  • Linden D (2007) The accidental mind: how brain evolution has given us love, memory, dreams, and god. Harvard University Press

    Google Scholar 

  • Linnaeus C (1758) Systema naturae, 10th edn. Laurentii Salvii, Holmiae, Stockholm

    Google Scholar 

  • Lohman AHM, Smeets WJAJ (1993) Overview of the main and accessory olfactory bulb projections in reptiles. Brain Behav Evol 41:147–155

    Article  CAS  Google Scholar 

  • Londoño C, Bartolomé A, Carazo P, Font E (2018) Chemosensory enrichment as a simple and effective way to improve the welfare of captive lizards. Ethology 124:674–683

    Article  Google Scholar 

  • MacLean PD (1985) Brain evolution relating to family, play and the separation call. Arch Gen Psychiatry 42:405–417

    Article  CAS  Google Scholar 

  • MacLean PD (1990) The triune brain in evolution: role in paleocerebral functions. Plenum, New York

    Google Scholar 

  • Macrì S, Savriama Y, Khan I, Di-Poï N (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 10:5560

    Article  Google Scholar 

  • Manrod JD, Hartdegen R, Burghardt GM (2008) Rapid solving of a problem apparatus by juvenile black-throated monitor lizards (Varanus albigularis albigularis). Anim Cogn 11:267–273

    Article  Google Scholar 

  • Maple TL, Perdue BM (2013) Zoo animal welfare. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Maslanka MT, Frye FL, Henry BA, Augustine L (2023) Nutritional considerations, Chap. 14. In: Warwick C et al (eds) Health and welfare of captive reptiles, 2nd edn. Springer, Heidelberg, pp 447–486. ISBN 978-3-030-86011-0

    Google Scholar 

  • Matsubara S, Deeming D, Wilkinson A (2017) Cold-blooded cognition: new directions in reptile cognition. Curr Opin Behav Sci 16:126–130

    Article  Google Scholar 

  • McIlhenny EA (1935) The alligator’s life history. Christopher Publishing House, Boston

    Google Scholar 

  • Melfi VA (2009) There are big gaps in our knowledge, and thus approach, to zoo animal welfare: a case for evidence-based zoo animal management. Zoo Biol 28:574–588

    CAS  Google Scholar 

  • Miletto Petrazzini ME, Bertolucci C, Foà A (2018) Quantity discrimination in trained lizards (Podarcis sicula). Front Psychol 9:274

    Article  Google Scholar 

  • Miranda EBP (2017) The plight of reptiles as ecological actors in the tropics. Front Ecol Evol 5:159

    Article  Google Scholar 

  • Mizuno T, Kojima Y (2015) A blindsnake that decapitates its termite prey. J Zool 297:220–224

    Article  Google Scholar 

  • Mueller-Paul J, Wilkinson A, Hall G, Huber L (2012) Radial-arm-maze behavior of the red-footed tortoise (Geochelone carbonaria). J Comp Psychol 126:305–317

    Article  Google Scholar 

  • Murray BA, Bradshaw SD, Edward DH (1991) Feeding behavior and the occurrence of caudal luring on Burton’s pygopodid Lialis burtonis (Sauria: Pygopodidae). Copeia 1991:509–516

    Article  Google Scholar 

  • Nagabaskaran G, Burman OHP, Hoehfurtner T, Wilkinson A (2021) Environmental enrichment impacts discrimination between familiar and unfamiliar human odours in snakes (Pantherophis guttata). Appl Anim Behav Sci 237:105278

    Article  Google Scholar 

  • Naumann RK, Ondracek JM, Reiter S et al (2015) The reptilian brain. Curr Biol 25:R317–R321

    Article  CAS  Google Scholar 

  • Neill WT (1971) The last of the ruling reptiles: alligators, crocodiles, and their kin. Columbia University Press, New York

    Google Scholar 

  • Nir Y, Tononi G (2010) Dreaming and the brain: from phenomenology to neurophysiology. Trends Cogn Sci 14:88–100

    Article  Google Scholar 

  • Nomura T, Kawaguchi M, Ono K, Murakami Y (2013) Reptiles: a new model for brain evo-devo research. J Exp Zool B 320:57–73

    Article  Google Scholar 

  • Northcutt RG (2002) Understanding vertebrate brain evolution. Integr Comp Biol 42:743–756

    Article  Google Scholar 

  • Northcutt RG (2011) Evolving large and complex brains. Science 332:926–927

    Article  CAS  Google Scholar 

  • Northcutt RG (2013) Variation in reptilian brains and cognition. Brain Behav Evol 82:45–54

    Article  Google Scholar 

  • Olkowicz S, Kocourek M, Lučan RK et al (2017) Birds have primate-like numbers of neurons in the forebrain. PNAS 113:7255–7260

    Article  Google Scholar 

  • Ord TJ, Peters RA, Clucas B, Stamps JA (2007) Lizards speed up visual displays in noisy motion habitats. Proc R Soc B 274:1057–1062

    Article  Google Scholar 

  • Pepperberg I (1999) The Alex studies: cognitive and communicative abilities of grey parrots. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Pérez i de Lanuza G, Abalos J, Bartolome A, Font E (2018) Through the eye of a lizard: hue discrimination in a lizard with ventral polymorphic coloration. J Exp Biol 221:jeb169565

    Article  Google Scholar 

  • Pianka EP, Vitt LJ (2006) Lizards: windows to the evolution of diversity. University of California Press, Los Angeles

    Google Scholar 

  • Pooley AC, Gans C (1976) The Nile crocodile. Sci Am 234:114–124

    Article  CAS  Google Scholar 

  • Powell BJ, Leal M (2012) Brain evolution across the Puerto Rican anole radiation. Brain Behav Evol 80:170–180

    Article  Google Scholar 

  • Powell BJ, Leal M (2014) Brain organization and habitat complexity in Anolis lizards. Brain Behav Evol 84:8–18

    Article  Google Scholar 

  • Rattenborg NC (2006) Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 69:20–29

    Article  Google Scholar 

  • Rattenborg NC, Martinez-Gonzalez D, Lesku JA (2009) Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci Biobehav Rev 33:253–270

    Article  Google Scholar 

  • Reber SA, Janisch J, Torregrosa K, Darlington J, Vliet KA, Fitch WT (2017) Formants provide honest acoustic cues to body size in American alligators. Sci Rep 7:1816

    Article  Google Scholar 

  • Regalado R (2012) Social behavior of dwarf geckos (Sphaerodactylus): a comparative repertoire. Ecol Ethol Evol 24:344–366

    Article  Google Scholar 

  • Reiner A (1990) An explanation of behavior. Science 250:303–305

    Article  CAS  Google Scholar 

  • Reiner A (2005) A new avian brain nomenclature: why, how and what. Brain Res Bull 66:317–331

    Article  CAS  Google Scholar 

  • Reiner A (2009) Avian evolution: from Darwin’s finches to a new way of thinking about avian forebrain. Biol Lett 23:122–124

    Article  Google Scholar 

  • Reiter S, Liaw HP, Yamawaki TM et al (2017) On the value of reptilian brains to map the evolution of the hippocampal formation. Brain Behav Evol 90:41–52

    Article  Google Scholar 

  • Rial R, Nicolau MC, López-García JA, Almirall H (1993) On the evolution of waking and sleeping. Comp Biochem Physiol 104A:189–193

    Article  Google Scholar 

  • Rivas J, Burghardt GM (2002) Crotalomorphism: a metaphor for understanding anthropomorphism by omission. In: Bekoff M, Allen C, Burghardt GM (eds) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press, Cambridge, MA, pp 9–17

    Google Scholar 

  • Rivas JA, Levin LE (2004) Sexually dimorphic antipredator behavior in juvenile green iguanas: kin selection in the form of fraternal care? In: Alberts AC, Carter RL, Hayes WK, Martins EP (eds) Iguanas: biology and conservation. University of California Press, Berkeley, CA, pp 119–126

    Google Scholar 

  • Rodríguez-Robles JA, Leal M (1993) Effects of prey type on the feeding behavior of Alsophis portoricensis (Serpentes: Colubridae). J Herpetol 27:163–168

    Article  Google Scholar 

  • Roth G (2013) The long evolution of brains and minds. Springer, Dordrecht

    Book  Google Scholar 

  • Roth G (2015) Convergent evolution of complex brains and high intelligence. Philos Trans R Soc Lond Ser B Biol Sci 370:20150049

    Article  Google Scholar 

  • Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–257

    Article  Google Scholar 

  • Roth TC, Krochmal AR, LaDage LD (2019) Reptilian cognition: a more complex picture via integration of neurological mechanisms, behavioral constraints, and evolutionary context. BioEssays:e1900033. https://doi.org/10.1002/bies.201900033

  • Sagan C (1977) The dragons of Eden: Speculations on the evolution of human intelligence. Random House, New York

    Google Scholar 

  • Sakaluk S, Belwood JJ (1984) Gecko phonotaxis to cricket calling song: a case of satellite predation. Anim Behav 32:659–662

    Article  Google Scholar 

  • Salas C, Broglio C, Rodriguez F (2003) Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity. Brain Behav Evol 62:72–82

    Article  Google Scholar 

  • Schuett GW, Clark RW, Repp RA et al (2016) Social behavior of rattlesnakes: a shifting paradigm. In: Schuett GW, Feldner MJ, Smith CF, Reiserer RS (eds) Rattlesnakes of Arizona. Eco Publishing, Rodeo, NM, pp 161–244

    Google Scholar 

  • Seth AK, Baars BJ, Edelman DB (2005) Criteria for consciousness in humans and other mammals. Conscious Cogn 14:119–139

    Article  Google Scholar 

  • Shein-Idelson M, Ondracek JM, Liaw H-P et al (2016) Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352:590–595

    Article  CAS  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford University Press, New York

    Google Scholar 

  • Shimizu T, Shinozuka K, Uysal AK, Leilani Kellogg S (2017) The origins of the bird brain: multiple pulses of cerebral expansion in evolution. In: Watanabe S, Hofman MA, Shimizu T (eds) Evolution of the brain, cognition, and emotion in vertebrates. Springer, pp 35–57

    Chapter  Google Scholar 

  • Sjölander S (1995) Some cognitive breakthroughs in the evolution of cognition and consciousness, and their impact on the biology of language. Evol Cogn 1:3–11

    Google Scholar 

  • Smaldino PE, Palagi E, Burghardt GM, Pellis SM (2019) The evolution of two types of play. Behav Ecol 30:1388–1397

    Article  Google Scholar 

  • Soldati F, Burman OH, John EA et al (2017) Long-term memory of relative reward values. Biol Lett 13:20160853

    Article  Google Scholar 

  • Steinberg DS, Leal M (2013) Sensory system properties predict signal modulation in a tropical lizard. Anim Behav 85:623–629

    Article  Google Scholar 

  • Steinberg DS, Leal M (2018) Wild vs. lab – cognition outside the box. In: Bueno-Guerra N, Amici F (eds) Field and laboratory methods in animal cognition: a comparative guide. Cambridge University Press, Cambridge, p 279

    Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer, Sunderland

    Google Scholar 

  • Striedter GF (2007) The accidental mind: How brain evolution has given us love, memory, dreams, and god. Nature 447:640–640

    Article  CAS  Google Scholar 

  • Striedter GF (2016) Evolution of the hippocampus in reptiles and birds. J Comp Neurol 524:496–517

    Article  Google Scholar 

  • Szabo B, Noble DWA, Whiting MJ (2021) Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev Camb Philos Soc 96:331–356

    Article  Google Scholar 

  • Tauber ES, Roffwarg HP, Weitzman ED (1966) Eye movements and electroencephalogram activity during sleep in diurnal lizards. Nature 212:1612–1613

    Article  CAS  Google Scholar 

  • ten Donkelaar HJ (1998) Reptiles. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 2. Springer, Berlin, pp 1315–1524

    Chapter  Google Scholar 

  • Terrick TD, Mumme RL, Burghardt GM (1995) Aposematic coloration enhances chemosensory recognition of noxious prey in the garter snake, Thamnophis radix. Anim Behav 49:857–866

    Article  Google Scholar 

  • Thomas RK (1996) Investigating cognitive abilities in animals: unrealized potential. Cogn Brain Res 3:157–166

    Article  CAS  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Clarendon, Oxford

    Google Scholar 

  • Tosches MA, Yamawaki TM, Naumann RK, Jacobi AA, Tushev G, Laurent G (2018) Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360:881–888

    Article  CAS  Google Scholar 

  • Tseng HY, Lin CP, Hsu JY et al (2014) The functional significance of aposematic signals: geographic variation in the responses of widespread lizard predators to colourful invertebrate prey. PLoS One 9:e91777

    Article  Google Scholar 

  • Tye M (2017) Tense bees and shell-shocked crabs. Oxford University Press, Oxford

    Book  Google Scholar 

  • van Dongen PAM (1998) Brain size in vertebrates. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 3. Springer, Berlin, pp 2099–2134

    Chapter  Google Scholar 

  • Vitti JJ (2013) Cephalopod cognition in an evolutionary context: implications for ethology. Biosemiotics 6:393–401

    Article  Google Scholar 

  • Warwick C (1990) Reptilian ethology in captivity: observations of some problems and an evaluation of their aetiology. Appl Anim Behav Sci 26:1–13

    Article  Google Scholar 

  • Waters RM, Bowers BB, Burghardt GM (2017) Personality and individuality in reptile behavior. In: Vonk J, Weiss A, Kuczaj SA (eds) Personality in nonhuman animals. Springer, pp 153–184

    Chapter  Google Scholar 

  • Whiting MJ, While GM (2017) Sociality in lizards. In: Rubenstein DR, Abbot P (eds) Comparative social evolution. Cambridge University Press, Cambridge, pp 390–426

    Chapter  Google Scholar 

  • Whiting MJ, Webb JJ, Keogh JS (2009) Flat lizard female mimics use sexual deception in visual but not chemical communication. Proc R Soc B 276:1585–1591

    Article  Google Scholar 

  • Whiting MJ, Xu F, Kar F et al (2018) Evidence for social learning in a family living lizard. Front Ecol Evol 6:70

    Article  Google Scholar 

  • Wilkinson A, Huber L (2012) Cold-blooded cognition: reptilian cognitive abilities. In: Vonk J, Shackelford TK (eds) The Oxford handbook of comparative evolutionary psychology. Oxford University Press, New York, pp 129–143

    Chapter  Google Scholar 

  • Wilkinson A, Mandl I, Bugnyar T, Huber L (2010) Gaze following in the red-footed tortoise (Geochelone carbonaria). Anim Cogn 13:765–769

    Article  Google Scholar 

  • Wilkinson A, Mueller-Paul J, Huber L (2013) Picture-object recognition in the tortoise Chelonoidis carbonaria. Anim Cogn 16:99–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Font .

Editor information

Editors and Affiliations

Additional information

The vision of reptiles as unimportant, simplistic, peripheral, and expendable proto-animals remains strongly rooted in society. (Miranda 2017)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Font, E., Burghardt, G.M., Leal, M. (2023). Brains, Behaviour, and Cognition: Multiple Misconceptions. In: Warwick, C., Arena, P.C., Burghardt, G.M. (eds) Health and Welfare of Captive Reptiles. Springer, Cham. https://doi.org/10.1007/978-3-030-86012-7_7

Download citation

Publish with us

Policies and ethics