Skip to main content

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 205 Accesses

Abstract

This Chapter deals with the first component of injectability, i.e., the penetrability of the grains of the grout through the effective (nominal minimum) width Wnom of masonry discontinuities (voids, microcracks, joints). As it is known, grouting is intended to fill voids, fissures and open joints of the masonry as a system, producing a “dendrite” (a three-dimensional skeleton), directly contributing to the strength of the masonry as a whole. However, to do so, the grout should be able to pass through the “narrowest” possible width of such discontinuities, in order to reach the maximum possible internal volume of masonry and open joints, avoiding most of possible blockages. In the specific case of three-leaf masonries, the most decisive result of the grouting is expected to be the strengthening of the bond along the interfaces between the external layers and the infill; the rather small voids, as well as pre-existing fissures along these interfaces, have to be penetrated. In this chapter the penetrability of hydraulic grouts is discussed, and relationships between (i) two characteristic diameters of the grains of the solid phase of the grout and (ii) the nominal minimum (effective) width of fissures and voids of the structure to be injected are proposed. Furthermore, the beneficial role of replacing part of the cement or hydraulic lime with ultrafine materials in order to improve penetrability is presented, and related criteria are proposed. Extensive experimental verifications of the proposed quantitative models are finally offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Normally, this pressure is not higher than say 0.1 (MPa), because of the limited tensile strength of masonry, as well as in order to avoid segregation effects.

  2. 2.

    Note however that for a given fluidity, many other flow routes could also be followed should the grout be more penetrable, i.e., if its solid phase were finer.

  3. 3.

    See also Sect. 3.4. Effects of mixing method on fluidity.

  4. 4.

    For its definition, see Chap. 3.

  5. 5.

    It is however noted that in some cases fv-values may be higher. That is an additional reason for a final trial-mix to be carried out.

  6. 6.

    Besides, it is somehow interesting that it has the same format as the empirical “Eq. 2.2”; its denominator expressing characteristics of the initial binder, whereas its nominator is by definition “compatible” with properties of the blended material.

References

  • Aïtcin PC, Ballivy G, Parizeau R (1984) The use of condensed silica fume in grouts. Innovative cement grouting. ACI Special Publication SP-83, pp 1–18

    Google Scholar 

  • Association Francaise des Travaux en Souterrain (AFTES) (1991) Recommendations on grouting for underground works. Tunn Undergr Space Technol 6(4):383–461

    Google Scholar 

  • Axelsson M, Gustafson G (2010) The penetracone, a new robust field measurement device for determining the penetrability of cementitious grouts. Tunn Undergr Space Technol 25:1–8

    Article  Google Scholar 

  • Axelsson M, Gustafson G, Fransson A (2009) Stop mechanism for cementitious grouts at different water-to-cement ratios. Tunn Undergr Space Technol 24:390–397

    Article  Google Scholar 

  • Biçer-Şimşir B, Griffin I, Palazzo Bertholon B, Rainer L (2010) Lime- based injection grouts for the conservation of architectural surfaces. Stud Conserv. https://doi.org/101179/sic.2010.55.Supplement-1.3

    Google Scholar 

  • Binda L, Baronio G, Tiraboschi C (1993a) Repair of brick-masonries by injection of grouts: experimental research. J Struct Eng 20(1):29–44

    Google Scholar 

  • Binda L, Modena C, Baronio G (1993b) Strengthening of masonries by injection technique. In: Proceedings of 6° NaMC, vol I, Philadelphia, pp 1–14

    Google Scholar 

  • Binda L, Modena C, Baronio G, Gelmi A (1994) Experimental qualification of injection admixtures used for repair and strengthening of stone masonry walls. In: 10th International brick/block masonry conference, vol 2, Calgary, pp 539–548

    Google Scholar 

  • Binda L, Modena C, Baronio G, Abbaneo S (1997) Repair and investigation techniques for stone masonry walls. Constr Build Mater 11(3):133–142

    Google Scholar 

  • Binda L, Baronio G, Tiraboschi C, Tedeschi C (2003) Experimental research for the choice of adequate materials for the reconstruction of the Cathedral of Noto. Constr Build Mater 17:629–639

    Article  Google Scholar 

  • Bombled JP (1974) Rhéologie des mortiers et des bétons frais, étude de la pâte interstitielle de ciment. Revue des matériaux de construction, no688, Mai-Juin pp 137–155

    Google Scholar 

  • Bras A (2011) Grout optimization for masonry consolidation. PhD thesis, Universidade Nova de Lisboa, Lisbon, Portugal

    Google Scholar 

  • Bras A, Henriques FMA (2009) The influence of the mixing procedures on the optimization of fresh grout properties. Mater Struct 42:1423–1432

    Article  Google Scholar 

  • Bras A, Henriques FMA (2012) Natural hydraulic lime based grouts—the selection of grout injection parameters for masonry consolidation. Constr Build Mater 26:135–144

    Google Scholar 

  • Buil M, Paillère A-M, Hamon JP (1987) Application d’un modèle de viscosité de suspensions concentrées polydispersées à la formulation de coulis d’injection à base de liants hydrauliques. In: Proceedings of the first international RILEM conference on from materials science to construction materials engineering, vol 1, Paris, Chapman and Hall Edit., pp 349–356

    Google Scholar 

  • Cambefort H (1977) Principes et applications de l’injection. Annales de l’ITBTP, Paris, Supp. no 353, Série: Sols et fondations, no 144, 23 p

    Google Scholar 

  • Dantu P (1961) Etude mécanique d’un milieu pulvérulent formé de sphères égales de compacité maxima. 5ème Congrès International de Mécanique des sols et des Travaux de Fondations, Paris, Dunod, Publication 61-3, 10 p

    Google Scholar 

  • Domone PL, Tank SB (1986) Use of condensed silica fume in Portland cement grouts. In: Proceedings of the second international conference on fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Madrid, Spain, pp 1231–1260

    Google Scholar 

  • EN 1771 (2004) Products and systems for the protection and repair of concrete structures. Test methods. Determination of injectability and splitting test

    Google Scholar 

  • Eriksson M (2002) Prediction of grout spread and sealing effect. A probabilistic approach. Doctoral thesis. Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Eriksson M, Friedrich M, Vorschulze Ch (2004) Variations in the rheology and penetrability of cement-based grouts—an experimental study. Cem Concr Res 34:1111–1119

    Google Scholar 

  • Fernandez-Altable V, Casanova I (2006) Influence of mixing sequence and superplasticizer dosage on the rheological response of cement pastes at different temperatures. Cem Concr Res 36:1222–1230

    Google Scholar 

  • Ferragni D, Malliet J, Di Martino S, Forti M (1982) Essais de laboratoire sur des coulis à base de ciment. In: Proceedings of the international symposium on Mortiers, ciments et coulis utilisés dans la conservation des bâtiments historiques, Ed. ICCROM, Rome, 3-6 Nov 1981, pp 185–203

    Google Scholar 

  • Ferragni D, Forti M, Malliet J, Mora P, Teutonico JM, Torraca G (1984) Injection grouting of mural paintings and mosaics. In: Proceedings of the international symposium on adhesives and consolidants, Paris, 2–8 Sept, pp 110–116

    Google Scholar 

  • Gustafson G, Stille H (1996) Prediction of groutability from grout properties and hydrogeological data. Tunn Undergr Space Technol 11(3):325–332

    Article  Google Scholar 

  • Hobbs DW (1980) The effect of pulverized-fuel ash upon the workability of cement paste and concrete. Mag Concr Res 32(113):219–226

    Google Scholar 

  • Hu C (1995) Rhéologie des betons fluids. Etudes et Recherches des Laboratoires des Ponts et Chaussées. Série ouvrages d’art OA16, LCPC, pp 1–202

    Google Scholar 

  • Hutchinson MT (1981) Principles of grouting II. Cem Concr Assoc Training Centre J

    Google Scholar 

  • Johnson SJ (1958) Cement and clay grouting of foundations: Grouting with clay-cement grouts. J Soil Mech Found Eng Div ASCE 84(1):1–12

    Google Scholar 

  • Jorne F, Henriques FMA, Baltazar LG (2015) Injection capacity of hydraulic lime grouts in different porous media. Mater Struct 48:2211–2233. https://doi.org/10.1617/s11527-014-0304-9

  • Kalagri A, Miltiadou-Fezans A, Vintzileou E (2010) Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater Struct 43:1135–1146, doi 0.1617/s11527-009-9572-11

    Article  Google Scholar 

  • Laefer D, Baronio G, Anzani A, Binda L (1998) Measurement of grout injection efficacy for stone masonry walls. In: Conv. 7NAMC, vol 1, Notre Dame, USA, pp 484–496

    Google Scholar 

  • Legrand C (1982) La structure des suspensions de ciments. Le béton hydraulique, Presses de l’École Nationale des Ponts et Chaussées, Paris, pp 99–113

    Google Scholar 

  • Léonard ZF (1961) Grouting: clay based and chemical. Eng 864–866

    Google Scholar 

  • Littlejohn GS (1983) Chemical grouting. South African Institution of Civil Engineers, University of Witwatersrand Johannesburg, 4–6th July 1983

    Google Scholar 

  • Luso E, Lourenço PB (2016) Experimental characterization of commercial lime-based grouts for stone masonry consolidation. Constr Build Mater 102:216–225

    Google Scholar 

  • Luso E, Lourenço PB (2017) Experimental laboratory design of lime based grouts for masonry consolidation. Int J Archit Heritage. https://doi.org/10.1080/15583058.2017.1354095

  • Macchi G (2019) Giorgio Macchi progetti. Il poligrafo casa editrice, Oct 2019, p 371

    Google Scholar 

  • Markou IN, Litsiou AE (2019) Efficiency of soil groutability criteria for cement suspension grouting. In: Proceedings of the XVII European conference on soil mechanics and geotechnical engineering, geotechnical engineering foundation of the future, Reykjavik. https://doi.org/10.32075/17ECSMGE-2019-0197

  • Miltiadou AE (1990) Étude des coulis hydrauliques pour la réparation et le renforcement des structures et des monuments historiques en maçonnerie. Thèse de Doctorat de l’Ecole Nationale des Ponts et Chaussées. Pub by LCPC in Collection Etudes et recherches des Laboratoires des Ponts et Chaussées, série Ouvrages d’art, OA8 ISSN 1161-028X, LCPC, Décembre 1991, Paris, France, p 278

    Google Scholar 

  • Miltiadou AE, Paillère A-M, Serrano JJ, Denis A, Musicas N (1990) Formulation de coulis hydrauliques pour l’injection des fissures et cavités des structures en maçonnerie dégradées. In: Proc. Inter. Conf. Structural conservation of stone masonry, 31/10–3/11/1989, Athens, Greece, Pub. ICCROM, pp 299–312

    Google Scholar 

  • Miltiadou AE, Durville J-L, Martineau F, Massieu E, Serrano J-J (1993) Etude mécanique de mélanges cailloux-mortier-influence de l’injection de coulis. Bull liaison Lab Ponts Chaussées-183-janv.-févr. 1993, Réf . 3677:75–84

    Google Scholar 

  • Miltiadou-Fezans A (1998) Criteria for the design of hydraulic grouts injectable into fine cracks and evaluation of their efficiency. In: Biscontin G, Moropoulou A, Erdik M, Delgado Rodrigues J (eds) Compatible materials for the protection of European cultural heritage, PACT 55 1998, Technical Chamber of Greece, pp 149–163

    Google Scholar 

  • Miltiadou-Fezans A, Tassios TP (2003) Penetrability of hydraulic grouts in structural strengthening. In: Barsony (ed) Anniversary volume honouring Peter Lenkei, Structural research. University of Pecs, Hungary

    Google Scholar 

  • Miltiadou-Fezans A, Tassios TP (2012) Fluidity of hydraulic grouts for masonry strengthening. RILEM Mater Struct. https://doi.org/10.1617/s11527-012-9872-8

  • Miltiadou-Fezans A, Tassios TP (2013) Penetrability of hydraulic grouts. RILEM Mater Struct. https://doi.org/10.1617/s11527-012-0005-1

  • Miltiadou-Fezans A, Papakonstantinou E, Zambas K, Panou A, Frantzikinaki K (2005) Design and application of hydraulic grouts of high injectability for structural restoration of the column drums of the Parthenon Opisthodomos. In: Brebbia CA, Torpiano A (eds) Structural studies, repairs and maintenance of heritage architecture IX. WIT Press, Southampton, pp 461–472

    Google Scholar 

  • Miltiadou-Fezans A, Kalagri A, Delinikolas N (2007) Design of hydraulic grout and application methodology for stone masonry structures bearing mosaics and mural paintings: the case of the Katholikon of Dafni Monastery. In: Arun G (ed) Proceedings of international symposium studies on historical heritage, Antalya, Turkey, 17–21 Sept 2007, pp 649–656

    Google Scholar 

  • Miltiadou-Fezans A, Kalagri A, Kakkinou S, Ziagou A, Delinikolas N, Zarogianni E, Chorafa E (2008) Methodology for in situ application of hydraulic grouts on historic masonry structures. The case of the Katholikon of Dafni Monastery. In: D’Ayala D, Fodde E (eds) Proceedings of the 6th international conference on structural analysis of historic construction, vol II, 2–4 July, Bath, UK. CRC Press/Balkema, Taylor and Francis Group, pp 1025–1033

    Google Scholar 

  • Mitchell KJ (1970) In-plane treatment of foundation soils. J Soil Mech Found Div Proc ASCE SM1 73–110

    Google Scholar 

  • Mutman U, Kavak A (2011) Improvement of granular soils by low pressure grouting. Int J Phys Sci 6(17):4311–4322

    Google Scholar 

  • NF P 18-891:1986. Produits spéciaux destinés aux constructions en béton hydraulique. Produit pour injections dans des structures en béton. Essai d’injectabilité à la colonne de sable en milieux sec et humide

    Google Scholar 

  • Papadakis M (1957) Recherches sur le malaxage à haute turbulence des suspensions de ciment. Publication Technique No. 82-83. Extrait de la Revue des Matériaux de Construction, CERILH, pp 1–25

    Google Scholar 

  • Papadakis M (1959) L’injectabilité des coulis et mortiers de ciments. Revue des matériaux de construction, 531, publication technique no11 CERILH, p 48

    Google Scholar 

  • Papayianni I, Pachta V (2015) Experimental study on the performance of lime based grouts used in consolidating historic masonries. Mater Struct 48:2111–2121 (2015). https://doi.org/10.1617/s11527-014-0296-5

  • Paillère AM, Rizoulières Y (1978) Réparation des structures en béton par injection de polymères. Bull liaison Lab Ponts Chaussées (96):17–23

    Google Scholar 

  • Paillère AM, Guinez R (1984) Recherche d’une formulation de coulis à base de liants hydrauliques pour l’injection dans les fines fissures et les cavités. Bull liaison Lab Ponts Chaussées Paris (130):51–57

    Google Scholar 

  • Paillère AM, Serrano JJ, Buil M (1986) Possibilités offertes par l’emploi d’ultrafines siliceuses dans les coulis d’injection à base de liants hydrauliques. Bull liaison Lab Ponts Chaussées Paris (141):23–25

    Google Scholar 

  • Paillère AM, Buil M, Miltiadou A, Guinez R, Serrano JJ (1989) Use of silica fume and superplasticizers in cement grouts for injection of fine cracks. In: Proceedings of the third international conference on use of fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, Trondheim, Norway, SP-ACI, pp 1131–1157

    Google Scholar 

  • Ranisch EH, Rostasy FS, Herschelman F (1989) Properties of cement grouts with silica fume addition for the injection of post-tensioning ducts. In: Proceedings of the third international conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete, vol 2, 18–23 June 1989, Trondheim, Norway, SP 114-56, pp 1159–1171

    Google Scholar 

  • Roy DM, Asaga K (1979) Rheological properties of cement mixes: III. The effects of mixing procedures on viscometric properties of mixes containing superplasticizers. Cem Concr Res 9(6):731–739

    Google Scholar 

  • RILEM TC-52 RAC. Recommended tests to measure the adhesion between resin based materials and concrete

    Google Scholar 

  • Tattersall GH, Baker PH (1988) The effect of vibration on the rheological properties of fresh concrete. Mag Concr Res 40(143):79–89

    Google Scholar 

  • Toumbakari EE (2002) Lime-pozzolan-cement grouts and their structural effects on composite masonry walls. Ph.D. thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, p 364

    Google Scholar 

  • Toumbakari EE, Van Gemert D, Tassios TP, Tenoutasse N (1999) Effect of mixing procedure on injectability of cementitious grouts. Cem Concr Res 29:867–872

    Article  Google Scholar 

  • Uranjek M, Zarnic R, Bokan-Bosiljkov V, Bosiljkov V (2014) Seismic resistance of stone masonry building and effect of grouting. Gradevinar 66(8):715–726. https://doi.org/10.14256/JCE.1031.2014

  • Valluzzi MR (2000) Comportamento meccanico di murature storiche consolidate con materiali e tecniche a base di calce. PhD thesis, University of Trieste, p 276

    Google Scholar 

  • Valluzzi MR (2004) Consolidamento di murature in pietra. Inezioni di calce idraulica natural. Collana Scientifica “Recifere”, Ed. Gruppo Editoriale Faenza Editrice S.p.A., p 128

    Google Scholar 

  • Valluzzi MR, Da Porto F, Modena C (2003) Grout requirements for the injection of stone masonry walls. In: A new era of building. Proceedings of the conference of ICPCM, Cairo, Egypt, 18–20 Feb

    Google Scholar 

  • Van Gemert D, Ignoul S, Brosens K, Toumbakari EE (2015) Consolidation and strengthening of historical masonry by means of mineral grouts: grout development. Restor Build Monuments 21(1):29–45

    Google Scholar 

  • Van Rickstal F (2000) Grout injection of masonry, scientific approach and modeling. Ph.D. Thesis, departement of Civil engineering, Katholieke Universiteit Leuven, May 2000

    Google Scholar 

  • Yüzer N, Oktay D, Ulukaya S, Gökyğit-Arpaci EY (2015) Mechanical behaviour of two-wythe brick masonry walls injected with hydraulic lime grout. In: Proceedings of international conference REHAB 2015, 22–24 July 2015, Porto, Portugal

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Androniki Miltiadou-Fezans .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miltiadou-Fezans, A., Tassios, T.P. (2022). Penetrability. In: Mix-Design and Application of Hydraulic Grouts for Masonry Strengthening. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-85965-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85965-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85964-0

  • Online ISBN: 978-3-030-85965-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics