Skip to main content

Parallel Computing of Spatio-Temporal Model Based on Deep Reinforcement Learning

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12937))

Abstract

Deep learning parallel plays an important role in accelerating model training and improving prediction accuracy. In order to fully consider the authenticity of the simulation application scenario of model, the development of deep learning model is becoming more complex and deeper. However, a more complex and deeper model requires a larger amount of computation compared to common spatio-temporal model. In order to speed up the calculation speed and accuracy of the deep learning model, this work optimizes the common spatial-temporal model in deep learning from three aspects: data parallel, model parallel and gradient accumulation algorithm. Firstly, the data parallel slicing algorithm proposed in this work achieves parallel GPUs load balancing. Secondly, this work independently parallelizes the components of the deep spatio-temporal. Finally, this work proposes a gradient accumulation algorithm based on deep reinforcement learning. This work uses two data sets (GeoLife and Chengdu Taxi) to train and evaluate multiple parallel modes. The parallel mode combining data parallel and gradient accumulation algorithm is determined. The experimental effect has been greatly improved compared with the original model.

This research was supported in part by Shandong Province colleges and universities youth innovation technology plan innovation team project under Grant No. 2020KJN011, Shandong Provincial Natural Science Foundation under Grant No. ZR2020MF060, Program for Innovative Postdoctoral Talents in Shandong Province under Grant No. 40618030001, National Natural Science Foundation of China under Grant No. 61802216, and Postdoctoral Science Foundation of China under Grant No.2018M642613.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martineau, M., Atkinson, P., McIntosh-Smith, S.: Benchmarking the NVIDIA V100 GPU and Tensor Cores. In: Mencagli, G., B. Heras, D., Cardellini, V., Casalicchio, E., Jeannot, E., Wolf, F., Salis, A., Schifanella, C., Manumachu, R.R., Ricci, L., Beccuti, M., Antonelli, L., Garcia Sanchez, J.D., Scott, S.L. (eds.) Euro-Par 2018. LNCS, vol. 11339, pp. 444–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10549-5_35

    Chapter  Google Scholar 

  2. Zhu, H., Li, P., Jiao, L.: Review of parallel deep neural network. Chin. J. Comput. 41(8), 1861–1881 (2018)

    Google Scholar 

  3. Lui, Q., Zhuo, J., Zhang, Z.: A survey on deep reinforcement learning. Chin. J. Comput. 41(1), 1–27 (2018)

    Google Scholar 

  4. Shu, J., Zheng, W.: Performance analysis for massive problem data parallel computing. J. Softw. 11(5), 628–633 (2000)

    Google Scholar 

  5. Alexander, S.: An architecture for parallel topic models. In: Proceedings of the VLDB Endowment, VLDB, Santa Clara, CA, vol. 3, pp. 703–710 (2010)

    Google Scholar 

  6. Wang, S.: Research on parameter-exchanging optimizing mechanism in distributed deep learning. Huazhong University of Science and Technology, pp. 1–64 (2015)

    Google Scholar 

  7. Chen, M., Yan, Z., Ye, Y.: Parallel optimization for deep learning based on HPC environment. Comput. Eng. Sci. 40(8), 133–140 (2019)

    Google Scholar 

  8. Zheng, S., Meng, Q., and Wang, T.: Asynchronous stochastic gradient descent with delay compensation. In: 34th International Conference on Machine Learning, ICML, Sydney, Australia, vol. 70, pp. 4120-4129 (2017)

    Google Scholar 

  9. Wang, L., Yang, J., Cheng, L.: Parallel optimization of chinese language model based on recurrent neural network. J. Appl. Sci. 33(3), 253–261 (2015)

    Google Scholar 

  10. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural networks. In: 35th International Conference on Machine Learning, ICML, Stockholm, Sweden, pp. 1-15 (2018)

    Google Scholar 

  11. Lee, S., Kim, J.K., Zheng, X.: Primitives for dynamic big model parallelism, 1–22. arXiv (2014)

    Google Scholar 

  12. Shoeybi, M., Patwary, M., Puri, R.: Megatron-lm: training multi-billion parameter language models using model parallelism. arXiv, 1–15 (2019)

    Google Scholar 

  13. Ding, Y., Liu, B.: Using GPU for high-performance data parallel computing. Programmer 4(62), 97–99 (2008)

    Google Scholar 

  14. Sun, S., Chen, W., Bian, J., Liu, X., Liu, T.-Y.: Ensemble-compression: A new method for parallel training of deep neural networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 187–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_12

    Chapter  Google Scholar 

  15. Wang, X., Xv, X., Wu, T.: The optimal reward baseline for policy-gradient reinforcement learning. Chin. J. Comput. Chin. Ed. 28(6), 1021–1026 (2005)

    Google Scholar 

  16. Cheng, S., Gu, R., Cheng, G.: Natural gradient reinforcement learning algorithm with TD(λ). Comput. Sci. 37(12), 186–189 (2010)

    Google Scholar 

  17. Luo, C., Su, R., Wang, X.: Adaptive stochastic parallel gradient descent algorithm and its application in coherent beam combining. Acta Optica Sinica 34(s1), s1010061–s1010065 (2014)

    Google Scholar 

  18. Zhang, L., Sun, H., Guo, H.: Auto focusing algorithm based on largest gray gradient summation. Acta Photonica Sinica 42(5), 605–610 (2013)

    Article  Google Scholar 

  19. Wang, D., Zhang, J., Cao, W.: When will you arrive? Estimating travel time based on deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence, AAAI, vol. 32, pp. 2500-2507, New Orleans, Louisiana, USA (2018)

    Google Scholar 

  20. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning, 1–28. arXiv (2020)

    Google Scholar 

  21. Bi, B., Wang, Q., Coleman, J.: A novel mutation A212T in chloroplast Protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor Oxadiazon in Eleusine indica. Pest Manag. Sci. 76(5), 1786–1794 (2019)

    Article  Google Scholar 

  22. Sharif, M., Attique, M., Tahir, M.Z.: A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition. J. Organ. End User Comput. (JOEUC) 32(2), 67–92 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Z., Li, J., Xu, Z., Wang, Y., Li, H. (2021). Parallel Computing of Spatio-Temporal Model Based on Deep Reinforcement Learning. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12937. Springer, Cham. https://doi.org/10.1007/978-3-030-85928-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85928-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85927-5

  • Online ISBN: 978-3-030-85928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics