Skip to main content

GRASP: Graph Alignment Through Spectral Signatures

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2021)

Abstract

What is the best way to match the nodes of two graphs? This graph alignment problem generalizes graph isomorphism and arises in applications from social network analysis to bioinformatics. Existing solutions either require auxiliary information such as node attributes, or provide a single-scale view of the graph by translating the problem into aligning node embeddings.

In this paper, we transfer the shape-analysis concept of functional maps from the continuous to the discrete case, and treat the graph alignment problem as a special case of the problem of finding a mapping between functions on graphs. We present GRASP, a method that captures multiscale structural characteristics from the eigenvectors of the graph’s Laplacian and uses this information to align two graphs.Our experimental study, featuring noise levels higher than anything used in previous studies, shows that GRASP outperforms state-of-the-art methods for graph alignment across noise levels and graph types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solutions to the problem of aligning graphs with unequal numbers of nodes can rest on solutions to this basic problem form.

  2. 2.

    In our experiments we select \(q=100\) values evenly spaced in the range [0.1, 50].

  3. 3.

    \(\mu =0.132\) in our experiments.

References

  1. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on riemannian manifolds. FoCM 7(3), 303–330 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Bayati, M., Gleich, D.F., Saberi, A., Wang, Y.: Message-passing algorithms for sparse network alignment. TKDD 7(1), 3:1–3:31 (2013)

    Google Scholar 

  3. Belkin, M., Niyogi, P.: Convergence of laplacian eigenmaps. In: NeurIPS, pp. 129–136 (2006)

    Google Scholar 

  4. Chen, X., Heimann, M., Vahedian, F., Koutra, D.: Cone-align: consistent network alignment with proximity-preserving node embedding. In: CIKM, pp. 1985–1988 (2020)

    Google Scholar 

  5. Chung, F.R., Graham, F.C.: Spectral graph theory. No. 92, American Mathematical Soc. (1997)

    Google Scholar 

  6. Cohen-Steiner, D., Kong, W., Sohler, C., Valiant, G.: Approximating the spectrum of a graph. In: KDD, pp. 1263–1271 (2018)

    Google Scholar 

  7. El-Kebir, M., Heringa, J., Klau, G.W.: Natalie 2.0: Sparse global network alignment as a special case of quadratic assignment. Algorithms 8(4), 1035–1051 (2015)

    Google Scholar 

  8. Feizi, S., Quon, G., Mendoza, M., Medard, M., Kellis, M., Jadbabaie, A.: Spectral alignment of graphs. IEEE Trans. Netw, Sci (2019)

    Google Scholar 

  9. Heimann, M., Shen, H., Safavi, T., Koutra, D.: REGAL: representation learning-based graph alignment. In: CIKM, pp. 117–126 (2018)

    Google Scholar 

  10. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987)

    Article  MathSciNet  Google Scholar 

  11. Kazemi, E., Hassani, S.H., Grossglauser, M.: Growing a graph matching from a handful of seeds. PVLDB 8(10), 1010–1021 (2015)

    Google Scholar 

  12. Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC Bioinf. 10(S-1) (2009)

    Google Scholar 

  13. Knossow, D., Sharma, A., Mateus, D., Horaud, R.: Inexact matching of large and sparse graphs using laplacian eigenvectors. In: GdR International Working, pp. 144–153 (2009)

    Google Scholar 

  14. Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic bases. Comput Graph Forum. 32, 439–448 (2013)

    Article  Google Scholar 

  15. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)

    Article  Google Scholar 

  16. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using network embedding. In: IJCAI, pp. 1774–1780 (2016)

    Google Scholar 

  17. Nassar, H., Veldt, N., Mohammadi, S., Grama, A., Gleich, D.F.: Low rank spectral network alignment. In: WWW, pp. 619–628 (2018)

    Google Scholar 

  18. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.J.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 30:1–30:11 (2012)

    Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. PNAS 105(35), 12763–12768 (2008)

    Article  Google Scholar 

  21. Tsitsulin, A., Mottin, D., Karras, P., Bronstein, A.M., Müller, E.: NetLSD: hearing the shape of a graph. In: KDD, pp. 2347–2356 (2018)

    Google Scholar 

  22. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  Google Scholar 

  23. Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: ACM COSN, pp. 119–130 (2013)

    Google Scholar 

  24. Yasar, A., Çatalyürek, Ü.V.: An iterative global structure-assisted labeled network aligner. In: KDD, pp. 2614–2623 (2018)

    Google Scholar 

  25. Zhang, S., Tong, H.: FINAL: fast attributed network alignment. In: KDD, pp. 1345–1354 (2016)

    Google Scholar 

  26. Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: Deeplink: a deep learning approach for user identity linkage. In: INFOCOM, pp. 1313–1321 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Hermanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hermanns, J., Tsitsulin, A., Munkhoeva, M., Bronstein, A., Mottin, D., Karras, P. (2021). GRASP: Graph Alignment Through Spectral Signatures. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds) Web and Big Data. APWeb-WAIM 2021. Lecture Notes in Computer Science(), vol 12858. Springer, Cham. https://doi.org/10.1007/978-3-030-85896-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85896-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85895-7

  • Online ISBN: 978-3-030-85896-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics