Skip to main content

Maturity Models for the Assessment of Artificial Intelligence in Small and Medium-Sized Enterprises

  • Conference paper
  • First Online:
Digital Transformation (PLAIS EuroSymposium 2021)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 429))

Included in the following conference series:

Abstract

The digital transformation creates major challenges for companies and fosters disruptive change processes. Artificial intelligence (AI) and its applications play a major part in this context. Therefore, companies need to assess the necessity and advancement of AI applications on a regular basis. This type of AI assessments of applications, services and products can be driven based on maturity models (MM). This article aims to present and assess the status quo of current research on existing AIMM. Simultaneously, this work defines the foundation for further research activities in the field of AIMM and addresses previously neglected perspectives such as facets of privacy or ethical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knapp, P., Wagner, C.: Künstliche Intelligenz schafft neue Geschäftsmodelle im Mittelstand. In: Buxmann, P., Schmidt, H. (eds.) Künstliche Intelligenz, pp. 161–172. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-57568-0_10

    Chapter  Google Scholar 

  2. Bitkom: Künstliche Intelligenz kommt in Unternehmen allmählich voran. https://www.bitkom.org/Presse/Presseinformation/Kuenstliche-Intelligenz-kommt-in-Unternehmen-allmaehlich-voran

  3. Turing, A.M.: Computing machinery and intelligence-AM turing. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  4. McCarthy, J., Minsky, M., Rochester, N., Shannon, C.: In: Dartmouth Summer Research Conference on Artificial Intelligence (1956)

    Google Scholar 

  5. Fang, J., Su, H., Xiao, Y.: Will artificial intelligence surpass human intelligence? SSRN J. (2018). https://doi.org/10.2139/ssrn.3173876

  6. Richter, A., Gačić, T., Kölmel, B., Waidelich, L.: Künstliche Intelligenz und potenzielle Anwendungsfelder im Marketing. In: Deutscher Dialogmarketing Verband (ed.) Dialogmarketing Perspektiven 2018/2019, pp. 31–52. Springer Fachmedien Wiesbaden, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25583-1_2

  7. Makridakis, S.: The forthcoming atificial intelligence (AI) revolution: its impact on society and firms. Futures 90, 46–60 (2017). https://doi.org/10.1016/j.futures.2017.03.006

    Article  Google Scholar 

  8. Carr, S.: “AI gone mental”: engagement and ethics in data-driven technology for mental health. J. Ment. Health (Abingdon, England) 29, 125–130 (2020). https://doi.org/10.1080/09638237.2020.1714011

    Article  Google Scholar 

  9. Lee, I., Ali, S., Zhang, H., DiPaola, D., Breazeal, C.: Developing Middle school students’ AI literacy. In: Sherriff, M., Merkle, L.D., Cutter, P., Monge, A., Sheard, J. (eds.) Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, pp. 191–197. ACM, New York (2021). https://doi.org/10.1145/3408877.3432513

  10. Tschandl, P., et al.: Human–computer collaboration for skin cancer recognition. Nat. Med. 26, 1229–1234 (2020). https://doi.org/10.1038/s41591-020-0942-0

    Article  Google Scholar 

  11. Shen, X., et al.: AI-assisted network-slicing based next-generation wireless networks. IEEE Open J. Veh. Technol. 1, 45–66 (2020). https://doi.org/10.1109/ojvt.2020.2965100

    Article  Google Scholar 

  12. Brey, P.: Freedom and privacy in ambient intelligence. Ethics Inf. Technol. 7, 157–166 (2005). https://doi.org/10.1007/s10676-006-0005-3

    Article  Google Scholar 

  13. Rotman, D.: How technology is destroying jobs. Technol. Rev. 16, 28–35 (2013)

    Google Scholar 

  14. Eidenmueller, H.G.M.: Machine performance and human failure: how shall we regulate autonomous machines? SSRN J. (2019). https://doi.org/10.2139/ssrn.3414602

  15. Barr, A., Feigenbaum, E., Roads, C.: The handbook of artificial intelligence. JSTOR 1, 78 (1982)

    Google Scholar 

  16. Schalkoff, R.: Artificial Intelligence: An Engineering Approach. McGraw-Hill, Inc., Singapore (1990)

    Google Scholar 

  17. de Silva, C.: Intelligent Machines: Myths and Realities. CRC Press, London (2000)

    Google Scholar 

  18. Paulk, M.: A history of the capability maturity model for software. ASQ Softw. Qual. Prof. 12, 5–19 (2009)

    Google Scholar 

  19. Dahlin, G.: What can we learn from process maturity models – a literature review of models addressing process maturity. IJPMB 10, 495 (2020). https://doi.org/10.1504/IJPMB.2020.110285

    Article  Google Scholar 

  20. Yams, N.B., Richardson, V., Shubina, G.E., Albrecht, S., Gillblad, D.: Integrated AI and innovation management: the beginning of a beautiful friendship. TIM Rev. 10, 5–18 (2020). https://doi.org/10.22215/timreview/1399

    Article  Google Scholar 

  21. de Bruin, T., Rosemann, M., Freeze, R., Kulkarni, U.: Understanding the main phases of developing a maturity assessment model. In: 16th Australasian Conference on Information Systems, vol. 8–19 (2005)

    Google Scholar 

  22. Wendler, R.: The maturity of maturity model research: a systematic mapping study. Inf. Softw. Technol. 54, 1317–1339 (2012). https://doi.org/10.1016/j.infsof.2012.07.007

    Article  Google Scholar 

  23. Immerschitt, W., Stumpf M.: Merkmale von Klein- und Mittelunternehmen Employer Branding für KMU, pp. 17–33. Springer Gabler, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-01204-5_2

  24. Hevner, M.: Park, ram: design science in information systems research. MIS Q. 28, 75 (2004). https://doi.org/10.2307/25148625

    Article  Google Scholar 

  25. Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for IT management. Bus. Inf. Syst. Eng. 1, 213–222 (2009). https://doi.org/10.1007/s12599-009-0044-5

    Article  Google Scholar 

  26. Brocke, J., Simons, A., Niehaves, B., Reimer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of the European Conference on Information Systems, vol. 161 (2009)

    Google Scholar 

  27. Cooper, H.M.: Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988). https://doi.org/10.1007/BF03177550

    Article  Google Scholar 

  28. vom Brocke, J., Winter, R., Hevner, A., Maedche, A.: Special issue editorial –accumulation and evolution of design knowledge in design science research: a journey through time and space. JAIS 21, 520–544 (2020). https://doi.org/10.17705/1jais.00611

  29. Alsheibani, S., Cheung, Y., Messom, C.: Towards an artificial intelligence maturity model: from science fiction to business facts. In: Proceedings of the 23rd Pacific Asia Conference on Information Systems (PACIS), vol. 46 (2019)

    Google Scholar 

  30. World Intellectual Property Organization: WIPO Technology Trends 2021. Assistive Technology (2021)

    Google Scholar 

  31. Bérubé, M., Giannelia, T., Vial, G.: Barriers to the Implementation of AI in Organizations: Findings from a Delphi Study. University of Hawai’i at Manoa Hamilton Library, Honolulu (2021)

    Google Scholar 

  32. Vakkuri, V., et al.: Time for AI (Ethics) Maturity Model Is Now (2021)

    Google Scholar 

  33. Jöhnk, J., Weißert, M., Wyrtki, K.: Ready or not, AI comes—an interview study of organizational AI readiness factors. Bus. Inf. Syst. Eng. 63(1), 5–20 (2020). https://doi.org/10.1007/s12599-020-00676-7

    Article  Google Scholar 

  34. Mikalef, P., Gupta, M.: Artificial intelligence capability: conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf. Manag. 58, 103434 (2021). https://doi.org/10.1016/j.im.2021.103434

    Article  Google Scholar 

  35. Gentsch, P.: AI in marketing, Sales and Service. How Marketers Without a Data Science Degree Can Use AI, Big Data And Bots. Palgrave Macmillan, Cham (2019)

    Google Scholar 

  36. Haefner, N., Wincent, J., Parida, V., Gassmann, O.: Artificial intelligence and innovation management: a review, framework, and research agenda✰. Technol. Forecast. Soc. Chang. 162, 120392 (2021). https://doi.org/10.1016/j.techfore.2020.120392

    Article  Google Scholar 

  37. Niewiadomski, P., Stachowiak, A., Pawlak, N.: Knowledge on IT tools based on AI maturity – industry 4.0 perspective. Procedia Manuf. 39, 574–582 (2019). https://doi.org/10.1016/j.promfg.2020.01.421

  38. Ellefsen, A.P.T., Oleśków-Szłapka, J., Pawłowski, G., Toboła, A.: Striving for excellence in AI implementation: AI maturity model framework and preliminary research results. LogForum 15, 363–376 (2019). https://doi.org/10.17270/J.LOG.2019.354

    Article  Google Scholar 

  39. Holmstrom, J.: From AI to digital transformation: the AI readiness framework. Business Horizons (2021). https://doi.org/10.1016/j.bushor.2021.03.006

  40. Sicular, S., Elliot, B., Andrews, W., Hamer, P.: Artificial Intelligence Maturity Model (2020)

    Google Scholar 

  41. Intel, Data Center Artificial Intelligence: The AI Readiness Model (2018)

    Google Scholar 

  42. Pringle, T., Zoller, E.: How to Achieve AI Maturity and Why It Matters (2018)

    Google Scholar 

  43. Shearer, E., Stirling, R., Pasquarelli, W.: Government AI Readiness Index 2020 (2020)

    Google Scholar 

  44. Siau, K., Wang, W.: Artificial intelligence (AI) ethics. J Database Manag. 31, 74–87 (2020). https://doi.org/10.4018/JDM.2020040105

    Article  Google Scholar 

  45. Stahl, B.C., Wright, D.: Ethics and privacy in AI and big data: implementing responsible research and innovation. IEEE Secur. Privacy 16, 26–33 (2018). https://doi.org/10.1109/MSP.2018.2701164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Waidelich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schuster, T., Waidelich, L., Volz, R. (2021). Maturity Models for the Assessment of Artificial Intelligence in Small and Medium-Sized Enterprises. In: Wrycza, S., Maślankowski, J. (eds) Digital Transformation. PLAIS EuroSymposium 2021. Lecture Notes in Business Information Processing, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-85893-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85893-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85892-6

  • Online ISBN: 978-3-030-85893-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics