Abstract
The digital transformation creates major challenges for companies and fosters disruptive change processes. Artificial intelligence (AI) and its applications play a major part in this context. Therefore, companies need to assess the necessity and advancement of AI applications on a regular basis. This type of AI assessments of applications, services and products can be driven based on maturity models (MM). This article aims to present and assess the status quo of current research on existing AIMM. Simultaneously, this work defines the foundation for further research activities in the field of AIMM and addresses previously neglected perspectives such as facets of privacy or ethical issues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Knapp, P., Wagner, C.: Künstliche Intelligenz schafft neue Geschäftsmodelle im Mittelstand. In: Buxmann, P., Schmidt, H. (eds.) Künstliche Intelligenz, pp. 161–172. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-57568-0_10
Bitkom: Künstliche Intelligenz kommt in Unternehmen allmählich voran. https://www.bitkom.org/Presse/Presseinformation/Kuenstliche-Intelligenz-kommt-in-Unternehmen-allmaehlich-voran
Turing, A.M.: Computing machinery and intelligence-AM turing. Mind 59, 433–460 (1950)
McCarthy, J., Minsky, M., Rochester, N., Shannon, C.: In: Dartmouth Summer Research Conference on Artificial Intelligence (1956)
Fang, J., Su, H., Xiao, Y.: Will artificial intelligence surpass human intelligence? SSRN J. (2018). https://doi.org/10.2139/ssrn.3173876
Richter, A., Gačić, T., Kölmel, B., Waidelich, L.: Künstliche Intelligenz und potenzielle Anwendungsfelder im Marketing. In: Deutscher Dialogmarketing Verband (ed.) Dialogmarketing Perspektiven 2018/2019, pp. 31–52. Springer Fachmedien Wiesbaden, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25583-1_2
Makridakis, S.: The forthcoming atificial intelligence (AI) revolution: its impact on society and firms. Futures 90, 46–60 (2017). https://doi.org/10.1016/j.futures.2017.03.006
Carr, S.: “AI gone mental”: engagement and ethics in data-driven technology for mental health. J. Ment. Health (Abingdon, England) 29, 125–130 (2020). https://doi.org/10.1080/09638237.2020.1714011
Lee, I., Ali, S., Zhang, H., DiPaola, D., Breazeal, C.: Developing Middle school students’ AI literacy. In: Sherriff, M., Merkle, L.D., Cutter, P., Monge, A., Sheard, J. (eds.) Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, pp. 191–197. ACM, New York (2021). https://doi.org/10.1145/3408877.3432513
Tschandl, P., et al.: Human–computer collaboration for skin cancer recognition. Nat. Med. 26, 1229–1234 (2020). https://doi.org/10.1038/s41591-020-0942-0
Shen, X., et al.: AI-assisted network-slicing based next-generation wireless networks. IEEE Open J. Veh. Technol. 1, 45–66 (2020). https://doi.org/10.1109/ojvt.2020.2965100
Brey, P.: Freedom and privacy in ambient intelligence. Ethics Inf. Technol. 7, 157–166 (2005). https://doi.org/10.1007/s10676-006-0005-3
Rotman, D.: How technology is destroying jobs. Technol. Rev. 16, 28–35 (2013)
Eidenmueller, H.G.M.: Machine performance and human failure: how shall we regulate autonomous machines? SSRN J. (2019). https://doi.org/10.2139/ssrn.3414602
Barr, A., Feigenbaum, E., Roads, C.: The handbook of artificial intelligence. JSTOR 1, 78 (1982)
Schalkoff, R.: Artificial Intelligence: An Engineering Approach. McGraw-Hill, Inc., Singapore (1990)
de Silva, C.: Intelligent Machines: Myths and Realities. CRC Press, London (2000)
Paulk, M.: A history of the capability maturity model for software. ASQ Softw. Qual. Prof. 12, 5–19 (2009)
Dahlin, G.: What can we learn from process maturity models – a literature review of models addressing process maturity. IJPMB 10, 495 (2020). https://doi.org/10.1504/IJPMB.2020.110285
Yams, N.B., Richardson, V., Shubina, G.E., Albrecht, S., Gillblad, D.: Integrated AI and innovation management: the beginning of a beautiful friendship. TIM Rev. 10, 5–18 (2020). https://doi.org/10.22215/timreview/1399
de Bruin, T., Rosemann, M., Freeze, R., Kulkarni, U.: Understanding the main phases of developing a maturity assessment model. In: 16th Australasian Conference on Information Systems, vol. 8–19 (2005)
Wendler, R.: The maturity of maturity model research: a systematic mapping study. Inf. Softw. Technol. 54, 1317–1339 (2012). https://doi.org/10.1016/j.infsof.2012.07.007
Immerschitt, W., Stumpf M.: Merkmale von Klein- und Mittelunternehmen Employer Branding für KMU, pp. 17–33. Springer Gabler, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-01204-5_2
Hevner, M.: Park, ram: design science in information systems research. MIS Q. 28, 75 (2004). https://doi.org/10.2307/25148625
Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for IT management. Bus. Inf. Syst. Eng. 1, 213–222 (2009). https://doi.org/10.1007/s12599-009-0044-5
Brocke, J., Simons, A., Niehaves, B., Reimer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proceedings of the European Conference on Information Systems, vol. 161 (2009)
Cooper, H.M.: Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988). https://doi.org/10.1007/BF03177550
vom Brocke, J., Winter, R., Hevner, A., Maedche, A.: Special issue editorial –accumulation and evolution of design knowledge in design science research: a journey through time and space. JAIS 21, 520–544 (2020). https://doi.org/10.17705/1jais.00611
Alsheibani, S., Cheung, Y., Messom, C.: Towards an artificial intelligence maturity model: from science fiction to business facts. In: Proceedings of the 23rd Pacific Asia Conference on Information Systems (PACIS), vol. 46 (2019)
World Intellectual Property Organization: WIPO Technology Trends 2021. Assistive Technology (2021)
Bérubé, M., Giannelia, T., Vial, G.: Barriers to the Implementation of AI in Organizations: Findings from a Delphi Study. University of Hawai’i at Manoa Hamilton Library, Honolulu (2021)
Vakkuri, V., et al.: Time for AI (Ethics) Maturity Model Is Now (2021)
Jöhnk, J., Weißert, M., Wyrtki, K.: Ready or not, AI comes—an interview study of organizational AI readiness factors. Bus. Inf. Syst. Eng. 63(1), 5–20 (2020). https://doi.org/10.1007/s12599-020-00676-7
Mikalef, P., Gupta, M.: Artificial intelligence capability: conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf. Manag. 58, 103434 (2021). https://doi.org/10.1016/j.im.2021.103434
Gentsch, P.: AI in marketing, Sales and Service. How Marketers Without a Data Science Degree Can Use AI, Big Data And Bots. Palgrave Macmillan, Cham (2019)
Haefner, N., Wincent, J., Parida, V., Gassmann, O.: Artificial intelligence and innovation management: a review, framework, and research agenda✰. Technol. Forecast. Soc. Chang. 162, 120392 (2021). https://doi.org/10.1016/j.techfore.2020.120392
Niewiadomski, P., Stachowiak, A., Pawlak, N.: Knowledge on IT tools based on AI maturity – industry 4.0 perspective. Procedia Manuf. 39, 574–582 (2019). https://doi.org/10.1016/j.promfg.2020.01.421
Ellefsen, A.P.T., Oleśków-Szłapka, J., Pawłowski, G., Toboła, A.: Striving for excellence in AI implementation: AI maturity model framework and preliminary research results. LogForum 15, 363–376 (2019). https://doi.org/10.17270/J.LOG.2019.354
Holmstrom, J.: From AI to digital transformation: the AI readiness framework. Business Horizons (2021). https://doi.org/10.1016/j.bushor.2021.03.006
Sicular, S., Elliot, B., Andrews, W., Hamer, P.: Artificial Intelligence Maturity Model (2020)
Intel, Data Center Artificial Intelligence: The AI Readiness Model (2018)
Pringle, T., Zoller, E.: How to Achieve AI Maturity and Why It Matters (2018)
Shearer, E., Stirling, R., Pasquarelli, W.: Government AI Readiness Index 2020 (2020)
Siau, K., Wang, W.: Artificial intelligence (AI) ethics. J Database Manag. 31, 74–87 (2020). https://doi.org/10.4018/JDM.2020040105
Stahl, B.C., Wright, D.: Ethics and privacy in AI and big data: implementing responsible research and innovation. IEEE Secur. Privacy 16, 26–33 (2018). https://doi.org/10.1109/MSP.2018.2701164
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Schuster, T., Waidelich, L., Volz, R. (2021). Maturity Models for the Assessment of Artificial Intelligence in Small and Medium-Sized Enterprises. In: Wrycza, S., Maślankowski, J. (eds) Digital Transformation. PLAIS EuroSymposium 2021. Lecture Notes in Business Information Processing, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-85893-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-85893-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85892-6
Online ISBN: 978-3-030-85893-3
eBook Packages: Computer ScienceComputer Science (R0)