Skip to main content

Towards Twin-Driven Engineering: Overview of the State-of-The-Art and Research Directions

  • 1732 Accesses

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 630)

Abstract

Cyber-Physical Systems (CPS) are complex physical systems interacting with a considerable number of distributed computing elements for monitoring, control and management. They are currently becoming larger as Cyber-Physical Systems of Systems (CPSoS), since many industrial companies are transitioning their complex systems of systems to software-intensive solutions in different domains such as production or manufacturing. Following the development and dissemination of DevOps approaches in the Software Engineering world, we propose the Twin-Driven Engineering (TDE) paradigm as a way to upgrade the role of Digital Twins (DT) to become a central point in all the engineering activities on the CPSoS, from design to decommissioning. Since CPSoS can be highly heterogeneous, we rather target the support for producing and maintaining a single integrated virtual representation of the CPSoS (i.e. a System of Twins) on which it is possible to perform global reasoning, analysis and verification. However, such a new paradigm comes with several open research challenges. We provide an overview of the state-of-the-art in key areas related to TDE. We identify under-investigated problems in related work and outline corresponding research directions.

Keywords

  • Twin-driven engineering
  • Cyber-physical systems
  • Systems of systems
  • State-of-the-Art
  • Research directions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-85874-2_37
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-85874-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pierantonio, A.: MDEForge: an extensible Web-based modeling platform. In: CloudMDE Workshop at MoDELS 2014, Valencia, Spain (2014)

    Google Scholar 

  2. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    CrossRef  Google Scholar 

  3. Bertoa, M.F., Moreno, N., Barquero, G., Burgueño, L., Troya, J., Vallecillo, A.: Expressing measurement uncertainty in OCL/UML datatypes. In: Pierantonio, A., Trujillo, S. (eds.) ECMFA 2018. LNCS, vol. 10890, pp. 46–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92997-2_4

    CrossRef  Google Scholar 

  4. Booch, G.: Object-Oriented Design with Applications. The Benjamin/Cummings Publishing Company Inc., San Francisco (1991)

    MATH  Google Scholar 

  5. Bruneliere, H., Burger, E., Cabot, J., Wimmer, M.: A Feature-based survey of model view approaches. Softw. Syst. Model. 18(3), 1931–1952 (2019)

    CrossRef  Google Scholar 

  6. Bruneliere, H., Marchand de Kerchove, F., Daniel, G., Madani, S., Kolovos, D., Cabot, J.: Scalable model views over heterogeneous modeling technologies and resources. Softw. Syst. Model. 19(4), 827–851 (2020)

    CrossRef  Google Scholar 

  7. Budinsky, F., Steinberg, D., Merks, E., Grose, T.J.: Eclipse Modelling Framework. Addison Wesley, Boston (2003)

    Google Scholar 

  8. Combemale, B., Wimmer, M.: Towards a model-based DevOps for cyber-physical systems. In: Bruel, J.M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS, vol. 12055, pp. 84–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39306-9_6

    CrossRef  Google Scholar 

  9. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Towards the systematic construction of domain-specific transformation languages. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 196–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09195-2_13

    CrossRef  Google Scholar 

  10. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Automatic and incremental product optimization for software product lines. In: ICST 2014, p. 31–40 (2014)

    Google Scholar 

  11. Gerostathopoulos, I., et al.: Self-adaptation in Software-intensive cyber-physical systems: from system goals to architecture configurations. J. Syst. Softw. 122, 378–397 (2016)

    CrossRef  Google Scholar 

  12. Gómez, A., Cabot, J., Wimmer, M.: TemporalEMF: A Temporal Metamodeling Framework. In: Trujillo, J., et al. (eds.) Conceptual Modelling ER 2018. LNCS, vol. 8569, pp. 365–381. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_26

    CrossRef  Google Scholar 

  13. Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with ModelBus. In: Workshop on Future Trends of Model-Driven Development (2009)

    Google Scholar 

  14. Hidaka, S., Tisi, M., Cabot, J., Hu, Z.: Feature-based classification of bidirectional transformation approaches. Softw. Syst. Model. 15(3), 907–928 (2016)

    CrossRef  Google Scholar 

  15. Jamshidi, M.: Systems of Systems Engineering: Principles and Applications. CRC Press, Boca Raton (2008)

    CrossRef  Google Scholar 

  16. Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework for component-based software systems. In: CBSE 2013, pp. 33–42 (2013)

    Google Scholar 

  17. Kanso, B., Taha, S.: Specification of temporal properties with OCL. Sci. Comput. Program. 96, 527–551 (2014)

    CrossRef  Google Scholar 

  18. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards disciplined and automated development of GMF-based graphical model editors. Softw. Syst. Model. 16, 1–27 (2015)

    Google Scholar 

  19. Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. ICSE. 2, 307–308 (2010)

    Google Scholar 

  20. Lee, E.A.: Cyber physical systems: design challenges. ISORC 2008, 363–369 (2008)

    Google Scholar 

  21. Lee, C.G., Park, S.C.: Survey on the virtual commissioning of manufacturing systems. J. Comput. Des. Eng. 1(3), 213–222 (2014)

    Google Scholar 

  22. Ledeczi, A., et al.: The generic modeling environment. In: Workshop on Intelligent Signal Processing (2001)

    Google Scholar 

  23. Mayerhofer, T., Wimmer, M., Vallecillo, A.: Adding uncertainty and units to quantity types in software models. In: MODELS 2016, pp. 118–131 (2016)

    Google Scholar 

  24. Mikic-Rakic, M., Medvidovic, N.: A classification of disconnected operation techniques. In: EUROMICRO 2006, pp. 144–151 (2006)

    Google Scholar 

  25. The Object Management Group, OMG’s Meta-Object Facility (MOF). https://www.omg.org/mof/. Accessed 18 June 2021

  26. Querejeta, M.U., Etxeberria, L., Sagardui, G.: Towards a DevOps approach in cyber physical production systems using digital twins. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch, F. (eds.) International Conference on Computer Safety. Reliability, and Security, pp. 205–216. Springer, Cham (2020)

    Google Scholar 

  27. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for Internet of Things: a survey. IEEE Internet of Things J. 3(1), 70–95 (2016)

    CrossRef  Google Scholar 

  28. Wolter, J., Kastens, U.: Generating 3D visual language editors: encapsulating interaction techniques in visual patterns. Int. J. Softw. Eng. Knowl. Eng. 25(2), 333–360 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Bruneliere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Tisi, M., Bruneliere, H., de Lara, J., Di Ruscio, D., Kolovos, D. (2021). Towards Twin-Driven Engineering: Overview of the State-of-The-Art and Research Directions. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-030-85874-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85874-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85873-5

  • Online ISBN: 978-3-030-85874-2

  • eBook Packages: Computer ScienceComputer Science (R0)