Skip to main content

Free Energy Transduction Within Autonomous Systems

  • Chapter
  • First Online:
Dissipation and Control in Microscopic Nonequilibrium Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 223 Accesses

Abstract

A central focus thus far in this thesis has been the excess work required to drive a stochastic system out of thermodynamic equilibrium through a time-dependent external perturbation. This excess work is directly related to the entropy produced during the driving process, which conveniently allows excess work and entropy production to be used interchangeably to quantify dissipation. Given the common intuition of biological molecular machines as internally communicating work between components, it is tempting to extend this correspondence to the driving of one component of an autonomous system by another; however, no such relation between the internal excess work and entropy production exists. In this chapter we introduce the ‘transduced additional free energy rate’ between strongly coupled subsystems of an autonomous system, that is analogous to the excess power in systems driven by an external control parameter that receives no feedback from the system. We prove that this is a relevant measure of dissipation—in that it equals the (non-negative) steady-state entropy production rate due to the downstream subsystem—and demonstrate its advantages with a simple model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Material in this chapter also appears in Ref. [1].

  2. 2.

    Because the entropy S (Sect. 2.5) is defined as the ensemble average of \(-\ln p_x\), we do not use angle brackets around entropy and entropy production terms here.

  3. 3.

    This insight allows some intriguing interpretations in the context of the thermodynamics of sensing, where a system X collects information about an external and independent stochastic variable Y . Rearranging the second law with the information rate on the RHS of (9.6) yields a refined lower bound on the steady-state dissipation for the system in terms of the nostalgia [19, 20] or learning rate [21, 22].

  4. 4.

    We found similar behavior in Chap. 6, where the excess power (6.26) to drive a system through an ensemble of stochastic control protocols–independent of the system response–contains a term that is independent of the driving strength.

  5. 5.

    Unlike the energy 𝜖 xy, the chemical potential is not a state function, and thus there is no unique chemical potential μ y for each state y. However, changes in chemical potential upon a transition \(\Delta \mu _{yy'}\) are well-defined for each transition.

References

  1. S.J. Large, J. Ehrich, D.A. Sivak, Free-energy transduction within autonomous machines. Phys. Rev. E 103, 022140 (2021)

    Article  ADS  Google Scholar 

  2. D.V. Schroeder, An Introduction to Thermal Physics (Pearson, 2000)

    Google Scholar 

  3. M. Esposito, C. Van den Broeck, Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  4. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  5. G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  6. J.M. Horowitz, M. Esposito, Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014)

    Google Scholar 

  7. J. Wagoner, K. Dill, Mechanisms for achieving high speed and efficiency in biomolecular machines. Proc. Natl. Acad. Sci. U. S. A. 116, 5902 (2019)

    Article  Google Scholar 

  8. S. Toyabe, T. Watanabe-Nakayama, T. Okamoto, S. Kudo, E. Muneyuki, Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc. Natl. Acad. Sci. U. S. A. 108, 17951 (2011)

    Article  ADS  Google Scholar 

  9. W. Li, A. Ma, Reaction mechanism and reaction coordinates from the viewpoint of energy flow. J. Chem. Phys. 114, 114103 (2016)

    Article  ADS  Google Scholar 

  10. S.J. Large, R. Chetrite, D.A. Sivak, Stochastic control in microscopic nonequilibrium systems. EPL 124, 20001 (2018)

    Article  ADS  Google Scholar 

  11. B.B. Machta, Dissipation bound for thermodynamic control. Phys. Rev. Lett. 115, 260603 (2015)

    Article  ADS  Google Scholar 

  12. S.J. Bryant, B.B. Machta, Energy dissipation bounds for autonomous thermodynamic cycles. Proc. Natl. Acad. Sci. U. S. A. 117(7), 3478–3483 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Hartich, A.C. Barato, U. Seifert, Stochastic thermodynamics of bipartite systems: transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech. 2014, P02016 (2014)

    Article  MathSciNet  Google Scholar 

  14. M. Esposito, Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

  15. T. Schmiedl, U. Seifert, Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98, 108301 (2007)

    Article  ADS  Google Scholar 

  16. E. Aurell, C. Mejía-Monasterio, P. Muratore-Ginanneschi, Optimal protocols and optimal transport in stochastic thermodynamics. Phys. Rev. Lett. 106, 250601 (2011)

    Article  ADS  Google Scholar 

  17. D.A. Sivak, G.E. Crooks, Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108, 190602 (2012)

    Article  ADS  Google Scholar 

  18. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, 2006)

    Google Scholar 

  19. S. Still, D.A. Sivak, A.J. Bell, G.E. Crooks, Thermodynamics of prediction. Phys. Rev. Lett. 109, 120604 (2012)

    Article  ADS  Google Scholar 

  20. M.E. Quenneville, D.A. Sivak, Energy dissipation and information flow in coupled Markovian systems. Entropy 20, 707 (2018)

    Article  ADS  Google Scholar 

  21. A. Barato, D. Hartich, U. Seifert, Efficiency of cellular information processing. New J. Phys. 16, 103024 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  22. R.A. Brittain, N.S. Jones, T.E. Ouldridge, What we learn from the learning rate. J. Stat. Mech. 2017, 063502 (2017)

    Article  MathSciNet  Google Scholar 

  23. U. Seifert, From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–92 (2019)

    Article  ADS  Google Scholar 

  24. C. Van den Broeck, M. Esposito, Ensemble and trajectory thermodynamics: a brief introduction. Physica A 418, 6–16 (2015)

    Article  ADS  Google Scholar 

  25. P.G. Bergmann, J.L. Lebowitz, New approach to nonequilibrium processes. Phys. Rev. 99, 578 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Esposito, C. Van den Broeck, Second law and Landauer principle far from equilibrium. EPL 95, 40004 (2011)

    Article  ADS  Google Scholar 

  27. A.I. Brown, D.A. Sivak, Allocating dissipation across a molecular machine cycle to maximize flux. Proc. Natl. Acad. Sci. U. S. A. 114, 11057 (2017)

    Article  Google Scholar 

  28. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic, 2002)

    Google Scholar 

  29. G. Verley, C. Van den Broeck, M. Esposito, Work statistics of stochastically driven systems. New J. Phys. 16, 095001 (2014)

    Article  ADS  Google Scholar 

  30. A.C. Barato, U. Seifert, Thermodynamic cost of external control. New J. Phys. 19, 073021 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Large, S.J. (2021). Free Energy Transduction Within Autonomous Systems. In: Dissipation and Control in Microscopic Nonequilibrium Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-85825-4_9

Download citation

Publish with us

Policies and ethics