Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 219 Accesses

Abstract

Throughout this thesis, we discussed a range of topics, all concerned with the general goal of better understanding the energetic and entropic flows in microscopic systems operating out of thermodynamic equilibrium. Beginning with the experimental design of efficient unfolding protocols of a DNA hairpin, we added confidence that simple near-equilibrium models can have significant utility in understanding the nonequilibrium physics of in vivo biological systems. Continuing, our theoretical investigations throughout the remainder of the thesis generalized the existing framework of optimal control in stochastic systems and embedded this framework into the broader context of stochastic thermodynamics. Ultimately, this body of research paves the way to more accurately treat the inner workings of biological molecular machines through the lens of control theory, towards the end of understanding the evolutionary design principles underlying their design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are subtle, but important differences between splitting the entropy production into that which is due to each subsystem’s dynamics, and that which is due to visible and hidden coordinates, even if one of the systems is visible and the other is hidden. Ultimately, this is because the transition rates of the visible system depend—through local detailed balance—on the state of the hidden system.

References

  1. A.C. Barato, U. Seifert, Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  2. T.R. Gingrich, J.M. Horowitz, N. Perunov, J.L. England, Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116, 120601 (2016)

    Article  ADS  Google Scholar 

  3. P. Pietzonka, F. Ritort, U. Seifert, Finite-time generalization of the thermodynamic uncertainty relation. Phys. Rev. E 96, 012101 (2017)

    Article  ADS  Google Scholar 

  4. T. Koyuk, U. Seifert, P. Pietzonka, A generalization of the thermodynamic uncertainty relation to periodically driven systems. J. Phys. A: Math. Theor. 52, 02LT02 (2019)

    Google Scholar 

  5. J.M. Horowitz, T.R. Gingrich, Proof of finite-time thermodynamic uncertainty relation for steady-state currents. Phys. Rev. E 96, 020103(R) (2017)

    Google Scholar 

  6. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  7. G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  8. F. Weinhold, Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 63(6), 2479–2483 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Ruppeiner, Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  10. F. Schlögl, A connection between correlations and the order of bit-number cumulants. Z. Phys. B 59, 449 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  11. G.E. Crooks, Measuring thermodynamic length. Phys. Rev. Lett. 99, 100602 (2007)

    Article  ADS  Google Scholar 

  12. D.A. Sivak, G.E. Crooks, Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108, 190602 (2012)

    Article  ADS  Google Scholar 

  13. J. Nulton, P. Salamon, B. Andresen, Q. Amin, Quasistatic processes as step equilibrations. J. Chem. Phys. 83, 334 (1985)

    Article  ADS  Google Scholar 

  14. B.B. Machta, Dissipation bound for thermodynamic control. Phys. Rev. Lett. 115, 260603 (2015)

    Article  ADS  Google Scholar 

  15. S.J. Bryant, B.B. Machta, Energy dissipation bounds for autonomous thermodynamic cycles. Proc. Natl. Acad. Sci. U. S. A. 117(7), 3478–3483 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  16. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  17. S. Toyabe, T. Okamoto, T. Watanabe-Nakayama, H. Taketani, S. Kudo, E. Muneyuki, Nonequilibrium energetics of a single F1-ATPase molecule. Phys. Rev. Lett. 104, 198103 (2010)

    Article  ADS  Google Scholar 

  18. T. Ariga, M. Tomishige, D. Mizuno, Nonequilibrium energetics of molecular motor Kinesin. Phys. Rev. Lett. 121, 218101 (2018)

    Article  ADS  Google Scholar 

  19. S. Toyabe, H. Ueno, E. Muneyuki, Recovery of state-specific potential of molecular motor from single-molecule trajectory. EPL 97, 40004 (2012)

    Article  ADS  Google Scholar 

  20. T.P. Silverstein, An exploration of how the thermodynamic efficiency of bioenergetic membrane systems arises with c-subunit stoichiometry of F1FoATP synthases J. Bioenerg. Biomembr. 46, 229 (2014)

    Article  Google Scholar 

  21. J.E. Niven, S.B. Laughlin, Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792 (2008)

    Article  Google Scholar 

  22. M. Ribezzi-Crivellari, F. Ritort, Large work extraction and the Landauer limit in a continuous Maxwell demon. Nat. Phys. 15, 660–664 (2019)

    Article  Google Scholar 

  23. M. Ribezzi-Crivellari, F. Ritort, Work extraction, information-content and the Landauer bound in the continuous Maxwell Demon. J. Stat. Mech. 2019, 084013 (2019)

    Article  MathSciNet  Google Scholar 

  24. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys 6, 988 (2010)

    Article  Google Scholar 

  25. P.A. Camati, J.P.S. Peterson, T.B. Batalhão, K. Micadei, A.M. Souza, Experimental rectification of entropy production my Maxwell’s demon in a quantum system. Phys. Rev. Lett. 117, 240502 (2016)

    Article  ADS  Google Scholar 

  26. J. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, On-chop Maxwell’s demon as an information-powered refridgerator. Phys. Rev. Lett. 115, 260602 (2015)

    Article  ADS  Google Scholar 

  27. T.K. Saha, J.N.E. Lucero, J. Ehrich, D.A. Sivak, J. Bechhoefer, Maximizing power and velocity of an information engine. Proc. Natl. Acad. Sci. U. S. A. 118(20), e2023356118 (2021)

    Google Scholar 

  28. J.M. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)

    Article  Google Scholar 

  29. M.E. Cates, Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 75, 042601 (2012)

    Article  ADS  Google Scholar 

  30. K. Kawguchi, S.-I. Sasa, T. Sagawa, Nonequilibrium dissipation-free transport in F1-ATPase and the thermodynamic role of asymmetric allosterism. Biophys. J. 106, 2450 (2014)

    Article  ADS  Google Scholar 

  31. E. Lathouwers, J.N.E. Lucero, D.A. Sivak, Nonequilibrium energy transduction in stochastic strongly coupled rotary motors. J. Phys. Chem. Lett. 11, 5273 (2020)

    Article  Google Scholar 

  32. U. Seifert, From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–192 (2019)

    Article  ADS  Google Scholar 

  33. I.A. Martínez, G. Basker, J.M. Horowitz, J.M.R. Parrondo, Inferring broken detailed balance in the absence of observable currents. Nat. Commun. 10, 3542 (2019)

    Article  ADS  Google Scholar 

  34. J. Li, J.M. Horowitz, T.R. Gingrich, N. Fakhri, Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019)

    Article  ADS  Google Scholar 

  35. É. Roldán, J.M.R. Parrondo, Estimating dissipation from single stationary trajectories. Phys. Rev. Lett. 105, 150607 (2010)

    Article  ADS  Google Scholar 

  36. A. Alemany, M. Ribezzi-Crivellari, F. Ritort, From free energy measurements to thermodynamic inference in nonequilibrium small systems. New J. Phys. 17, 075009 (2015)

    Article  ADS  Google Scholar 

  37. J. Mehl, B. Lander, C. Bechinger, V. Blickle, U. Seifert, Role of hidden slow degrees of freedom in the fluctuation theorem. Phys. Rev. Lett. 108, 220601 (2012)

    Article  ADS  Google Scholar 

  38. M. Uhl, P. Pietzonka, U. Seifert, Fluctuations of apparent entropy production in networks with hidden slow degrees of freedom. J. Stat. Mech. 2018, 023203 (2018)

    Article  MathSciNet  Google Scholar 

  39. M. Kahlen, J. Ehrich, Hidden slow degrees of freedom and fluctuation theorems: an analytically solvable model. J. Stat. Mech. 2018, 063204 (2018)

    Article  MathSciNet  Google Scholar 

  40. D. Gupta, S. Sabhapandit, Entropy production for partially observed harmonic systems. J. Stat. Mech. 2020, 013204 (2020)

    Article  MathSciNet  Google Scholar 

  41. M.J. Klein, The physics of J. Willard Gibbs in his time. Phys. Today 43(3), 40 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Large, S.J. (2021). Conclusions and Outlook. In: Dissipation and Control in Microscopic Nonequilibrium Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-85825-4_11

Download citation

Publish with us

Policies and ethics