Skip to main content

Trajectory Correction for Visually Impaired Athletes on 100 m Paralympic Races

  • Conference paper
  • First Online:
Comprehensible Science (ICCS 2021)

Abstract

The paper reports an experimental study that was carried out in Manaus (Amazonas, Brazil) with the participation of eight visually impaired athletes on 100 m sprint Paralympic races. A trajectory correction system was used, based on an accelerometer and a gyroscope for motion detection, an algorithm to track the athlete’s trajectories and a haptic actuator for the interaction with the athletes. The experimental results show the relevance in the use of this type of systems in Paralympic 100 m races for visually impaired athletes, mainly with the purpose of increasing their autonomy by mimicking their guides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rector, K., Milne, L., Ladner, R.E., Friedman, B., Kientz, J.A.: Exploring the Opportunities and challenges with exercise technologies for people who are blind or low-vision. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, pp. 203–214. ACM (2015)

    Google Scholar 

  2. Blauwet, C., Willick, S.E.: the paralympic movement: using sports to promote health, disability rights, and social integration for athletes with disabilities. PM&R 4(11), 851–856 (2012)

    Article  Google Scholar 

  3. Webborn, N.: Fifty years of competitive sport for athletes with disabilities: 1948–1998. Br. J. Sports Med. 33(2), 138 (1999)

    Article  Google Scholar 

  4. Laskowski, E.R., Lexell, J.: Exercise and sports for health promotion, disease, and disability. Phys. Med. Rehabil. 4, 795–796 (2012)

    Google Scholar 

  5. Ackland, P., Resnikoff, S., Bourne, R.: World blindness and visual impairment: despite many successes, the problem is growing. Commun. Eye Health 30(100), 71 (2017)

    Google Scholar 

  6. Visell, Y.: Tactile sensory substitution: models for enaction in HCI. Interact. Comput. 21(1–2), 38–53 (2009)

    Article  Google Scholar 

  7. Kuber, R., Yu, W.: Feasibility study of tactile-based authentication. Int. J. Hum. Comput. Stud. 68(3), 158–181 (2010)

    Article  Google Scholar 

  8. Zhu, S., Kuber, R., Tretter, M., O’Modhrain, M.S.: Identifying the effectiveness of using three different haptic devices for providing non-visual access to the web. Interact. Comput. 23(6), 565–581 (2011)

    Article  Google Scholar 

  9. Barbacena, I.L., Lima, A.C.O., Barros, A.T., Freire, R.C., Pereira, J.R.: Comparative analysis of tactile sensitivity between blind, deaf and unimpaired people. Int. J. Adv. Media commun. 3(1–2), 215–228 (2009)

    Article  Google Scholar 

  10. Copeland, D., Finlay, J.: Identification of the optimum resolution specification for a haptic graphic display. Interact. Comput. 22(2), 98–106 (2010)

    Article  Google Scholar 

  11. Khatchatourov, A., Castet, J., Florens, J.L., Luciani, A., Lenay, C.: Integrating tactile and force feedback for highly dynamic tasks: technological, experimental and epistemological aspects. Interact. Comput. 21(1–2), 26–37 (2009)

    Article  Google Scholar 

  12. Qian, H., Kuber, R., Sears, A.: Towards developing perceivable tactile feedback for mobile devices. Int. J. Hum. Comput. Stud. 69(11), 705–719 (2011)

    Article  Google Scholar 

  13. Ishizuka, H., Miki, N.: Mems-based tactile displays. Displays 37, 25–32 (2015)

    Article  Google Scholar 

  14. Karkar, A., Al-Maadeed, S.: Mobile assistive technologies for visual impaired users: a survey. In: 2018 International Conference on Computer and Applications (ICCA), pp. 427–433. IEEE, Beirut (2018)

    Google Scholar 

  15. Spiers, A.J., Dollar, A.M.: Design and evaluation of shape-changing haptic interfaces for pedestrian navigation assistance. IEEE Trans. Haptics 10(1), 17–28 (2016)

    Article  Google Scholar 

  16. Gual, J., Puyuelo, M., Lloveras, J.: The effect of volumetric (3D) tactile symbols within inclusive tactile maps. Appl. Ergon. 48, 1–10 (2015)

    Article  Google Scholar 

  17. Burkett, B.: Technology in paralympic sport: performance enhancement or essential for performance? Br. J. Sports Med. 44, 215–220 (2010)

    Article  Google Scholar 

  18. Muehlbradt, A., Koushik, V., Kane, S.: Goby: a wearable swimming aid for blind athletes. In Proceedings of the 19th International ACM Sigaccess Conference on Computers and Accessibility, pp. 377–378. ACM, Baltimore (2017)

    Google Scholar 

  19. Folmer, E.: Exploring the use of an aerial robot to guide blind runners. ACM SIGACCESS Accessibil. Comput. 112, 3–7 (2015)

    Article  Google Scholar 

  20. Mori, H., Kotani, S.: Robotic travel aid for the blind: HARUNOBU-6. In: European Conference on Disability, Virtual Reality, and Assistive Technology, pp. 193–202. ECDVRAT and University of Reading, Skövde (1998)

    Google Scholar 

  21. Galatas, G., McMurrough, C., Mariottini, G.L., Makedon, F.: EyeDog: an assistive-guide robot for the visually impaired. In: Proceedings of the 4th International Conference on Pervasive Technologies, pp 1–8. ACM, Heraklion (2011)

    Google Scholar 

  22. Mueller, F., Graether, E., Toprak, C.: Joggobot: jogging with a flying robot. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 2845–2846. ACM, Paris (2013)

    Google Scholar 

  23. Kulyukin, V., Gharpure, C., Nicholson, J., Osborne, G.: Robot-assisted wayfinding for the visually impaired in structured indoor environments. Auton. Robot. 21(1), 29–41 (2006)

    Article  Google Scholar 

  24. Branham, S.M., Roy, A.R.: Reading between the guidelines: how commercial voice assistant guidelines hinder accessibility for blind users. In 21st International ACM SIGACCESS Conference on Computers and Accessibility, pp. 446–458. ACM, Pittsburgh (2019)

    Google Scholar 

  25. Riehle, T.H., Lichter, P., Giudice, N.A.: An indoor navigation system to support the visually impaired. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4435–4438. IEEE, Vancouver (2008)

    Google Scholar 

  26. Boulos, M.N.K., et al.: CAALYX: a new generation of location-based services in healthcare. Int. J. Health Geogr. 6(1), 1–6 (2007)

    Article  Google Scholar 

  27. Bastos, M.P., Oka, G.T., Queiroz, L.A.: Protótipo para guiar atletas com deficiência em trajetória retilínea. Prototype for a guide of athletes with visual deficiency in rectilinear trajectory. In: XXXVII International Sodebras Congress, pp. 8–11. Sodebras, Fortaleza (2017)

    Google Scholar 

  28. Júnior, L.A.Q.C., et al.: A tracking topology to support a trajectory monitoring system directed at helping visually impaired on paralympic athletics. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1368, pp. 173–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72654-6_17

    Chapter  Google Scholar 

  29. Mascetti, S., Picinali, L., Gerino, A., Ahmetovic, D., Bernareggi, C.: Sonification of guidance data during road crossing for people with visual impairments or blindness. Int. J. Hum. Comput. Stud. 85, 16–26 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the CNPq (National Council for Scientific and Technological Development) and the resources of the CICARI Lab (Control, Automation and Industrial Robotics Centre), Manaus, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Pacheco Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Júnior, L.A.Q.C. et al. (2022). Trajectory Correction for Visually Impaired Athletes on 100 m Paralympic Races. In: Antipova, T. (eds) Comprehensible Science. ICCS 2021. Lecture Notes in Networks and Systems, vol 315. Springer, Cham. https://doi.org/10.1007/978-3-030-85799-8_33

Download citation

Publish with us

Policies and ethics