Skip to main content

Intrinsic Entropy for True Random Number Generation

  • Chapter
  • First Online:
The Next Era in Hardware Security

Abstract

Random numbers play a central role in a myriad of applications today ranging from statistical sampling and analysis, to computer simulation, graphics, cryptography, and hardware security. Most of these applications require a very high degree of randomness in the generated numbers, which warrants that the entropy source generating the randomness be pure and unpredictable. But this randomness is limited by the physical processes governing the entropy source of the specific True Random Number Generator (TRNG). In this chapter, we study how the intrinsic metastability-induced entropy in emerging devices can be a powerful tool to meet the requirements of a low power, energy-efficient, and robust TRNG for future security applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. d’Aquino et al., Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics. J. Appl. Phys. 99(8), 08B905 (2006)

    Google Scholar 

  2. S. Ament, N. Rangarajan, S. Rakheja, A practical guide to solving the stochastic Landau-Lifshitz-Gilbert-Slonczewski equation for macrospin dynamics. Preprint. arXiv:1607.04596 (2016)

    Google Scholar 

  3. G. Bertotti et al., Comparison of analytical solutions of Landau–Lifshitz equation for “damping” and “precessional” switchings. J. Appl. Phys. 93(10), 6811–6813 (2003)

    Article  Google Scholar 

  4. G. Bertotti, I.D. Mayergoyz, C. Serpico, Critical fields and pulse durations for precessional switching of thin magnetic films. IEEE Trans. Magn. 39(5), 2504–2506 (2003)

    Article  Google Scholar 

  5. P. Bonhomme et al., Circuit simulation of magnetization dynamics and spin transport. IEEE Trans. Electron Dev. 61(5), 1553–1560 (2014)

    Article  Google Scholar 

  6. W.F. Brown Jr, Thermal fluctuations of a single-domain particle. J. Appl. Phys. 34(4), 1319–1320 (1963)

    Article  Google Scholar 

  7. G. Bertotti, C. Serpico, I.D. Mayergoyz, Probabilistic aspects of magnetization relaxation in single-domain nanomagnets. Phys. Rev. Lett. 110(14), 147205 (2013)

    Google Scholar 

  8. P.J. Bustard et al., Quantum random bit generation using stimulated Raman scattering. Opt. Exp. 19(25), 25173–25180 (2011)

    Article  Google Scholar 

  9. M. d’Aquino et al., Analysis of reliable sub-ns spin-torque switching under transverse bias magnetic fields. J. Appl. Phys. 117(17), 17B716 (2015)

    Google Scholar 

  10. M. d’Aquino, Nonlinear magnetization dynamics in thin-films and nanoparticles. PhD thesis. Università degli Studi di Napoli Federico II, 2005

    Google Scholar 

  11. M. Fiorentino et al., Secure self-calibrating quantum random-bit generator. Phys. Rev. A 75(3), 032334 (2007)

    Google Scholar 

  12. A. Fukushima et al., Spin dice: A scalable truly random number generator based on spintronics. Appl. Phys. Exp. 7(8), 083001 (2014)

    Google Scholar 

  13. C. Gabriel et al., A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 4(10), 711–715 (2010)

    Article  Google Scholar 

  14. S. Ikeda et al., A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9(9), 721–724 (2010)

    Article  Google Scholar 

  15. M. Jerry et al., Stochastic insulator-to-metal phase transition-based true random number generator. IEEE Electron Dev. Lett. 39(1), 139–142 (2017)

    Article  Google Scholar 

  16. H. Jiang et al., A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8(1), 1–9 (2017)

    Article  Google Scholar 

  17. R. Kubo, N. Hashitsume, Brownian motion of spins. Prog. Theor. Phys. Suppl. 46, 210–220 (1970)

    Article  Google Scholar 

  18. A.I. Khan, A. Keshavarzi, S. Datta, The future of ferroelectric field-effect transistor technology. Nat. Electron. 3(10), 588–597 (2020)

    Article  Google Scholar 

  19. K. Lee et al., TRNG (True Random Number Generator) method using visible spectrum for secure communication on 5G network. IEEE Access 6, 12838–12847 (2018)

    Article  Google Scholar 

  20. H. Liu et al., Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97(24), 242510 (2010)

    Google Scholar 

  21. Z. Li, S. Zhang, Magnetization dynamics with a spin-transfer torque. Phys. Rev. B 68(2), 024404 (2003)

    Google Scholar 

  22. M. Matsui, Linear cryptanalysis method for DES cipher, in Workshop on the Theory and Application of of Cryptographic Techniques (Springer, Berlin, 1993), pp. 386–397

    Google Scholar 

  23. A.T. Markettos, S.W. Moore, The frequency injection attack on ring-oscillator-based true random number generators, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2009), pp. 317–331

    Google Scholar 

  24. H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, Random number generation based on ferroelectric switching. IEEE Electron Dev. Lett. 39(1), 135–138 (2017)

    Article  Google Scholar 

  25. S. Manipatruni, D.E. Nikonov, I.A. Young, Modeling and design of spintronic integrated circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 59(12), 2801–2814 (2012)

    Article  MathSciNet  Google Scholar 

  26. D. Neustadter. True random number generators for heightened security in any SoC (2019). https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html

  27. K.H. Park et al., High rate true random number generator using beta radiation, in AIP Conference Proceedings, vol. 2295. 1 (AIP Publishing LLC, 2020), p. 020020

    Google Scholar 

  28. N. Rangarajan, A. Parthasarathy, S. Rakheja, A spin-based true random number generator exploiting the stochastic precessional switching of nanomagnets. J. Appl. Phys. 121(22), 223905 (2017)

    Google Scholar 

  29. D.C. Ralph, M.D. Stiles, Spin transfer torques. J. Magn. Magn. Mater. 320(7), 1190–1216 (2008)

    Article  Google Scholar 

  30. A. Rukhin et al., NIST special publication 800-22. A statistical test suite for random and pseudorandom number generators for cryptographic applications (2001)

    Google Scholar 

  31. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1), L1–L7 (1996). ISSN: 0304-8853. https://doi.org/10.1016/0304-8853(96)00062-5. http://www.sciencedirect.com/science/article/pii/0304885396000625

  32. J.Z. Sun, Spin angular momentum transfer in current-perpendicular nanomagnetic junctions. IBM J. Res. Dev. 50(1), 81–100 (2006)

    Article  MathSciNet  Google Scholar 

  33. M.D. Stiles, A. Zangwill, Anatomy of spin-transfer torque. Phys. Rev. B 66(1), 014407 (2002)

    Google Scholar 

  34. A. Uchida, K. Amano et al., Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2(12), 728–732 (2008)

    Article  Google Scholar 

  35. I. Vasyltsov et al., Fast digital TRNG based on metastable ring oscillator, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2008), pp. 164–180

    Google Scholar 

  36. Z. Wei et al., True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM, in 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, Piscataway, 2016), pp. 4–8

    Google Scholar 

  37. J. Xiao, A. Zangwill, M.D. Stiles, Macrospin models of spin transfer dynamics. Phys. Rev. B 72(1), 014446 (2005)

    Google Scholar 

  38. C.A.O. Yang, Securing hardware random number generators against physical attacks. KU Leuven (2016). https://www.esat.kuleuven.be/cosic/publications/thesis-272.pdf

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1

The dynamics and performance of the majority of spin-based devices are modeled using the stochastic Landau–Lifshitz–Gilbert–Slonczewski (s-LLGS) equation. This equation describes the temporal evolution of the magnetization vector, M, of a monodomain nanomagnet under the effects of magnetic fields, STT, and thermal noise [Slo96, RS08, SZ02]. Mathematically, the s-LLGS equation is given as

$$\displaystyle \begin{aligned} \frac{d\boldsymbol{M}}{dt} = -\gamma\mu_0(\boldsymbol{M}\times \boldsymbol{H}_{\text{eff}}) + \frac{\alpha}{M_{\text{s}}} \Big(\boldsymbol{M}\times\frac{d\boldsymbol{M}}{dt}\Big) - \frac{\boldsymbol{M} \times (\boldsymbol{M} \times \boldsymbol{I_{\text{s}}})}{qN_{\text{s}}M_{\text{s}}}, {} \end{aligned} $$
(5.1)

where H eff is the effective magnetic field experienced by the nanomagnet, α is the dimensionless Gilbert damping constant, I s is the applied spin current, q is the elementary charge, and other quantities are as defined previously.

The first term on the right hand side (RHS) in Eq. (5.1) is the conservative precessional torque that governs the precession of the magnetization vector around the effective field acting on the nanomagnet. This effective field comprises the magnetocrystalline anisotropy field, the shape anisotropy field, and the external applied field. A Langevin field \(\boldsymbol {h}_r = h_x \hat {\boldsymbol {x}} + h_y \hat {\boldsymbol {y}} + h_z \hat {\boldsymbol {z}}\), representing Gaussian white noise, is added into the effective field in the s-LLGS equation to model thermal noise. The second term on the RHS in (5.1) is the Gilbert damping torque, which is responsible for damping the precessions of the magnetization vector and eventually relaxing it to one of its stable states [dAq05]. The final term on the RHS in Eq. (5.1) is the Slonczewski spin torque arising from the deposition of spin angular momentum by the itinerant electrons of the spin-polarized current. For simplicity of analysis, Eq. (5.1) is often transformed into its dimensionless form, expressed as

$$\displaystyle \begin{aligned} \frac{d\boldsymbol{m}}{dt} = - \boldsymbol{m} \times \boldsymbol{h}_{\text{eff}} + \alpha \left( \boldsymbol{m} \times \frac{d\boldsymbol{m}}{dt} \right) - \boldsymbol{m} \times ( \boldsymbol{m} \times \boldsymbol{i}_{\text{s}}) , \end{aligned} $$
(5.2)

where we have the normalized quantities \(\boldsymbol {m} = \frac {\boldsymbol {M}}{M_{\text{s}}}\), \(\boldsymbol {h}_{\text{eff}} = \frac {\boldsymbol {H}_{\text{eff}}}{M_{\text{s}}}\), and \(\boldsymbol {i_{\text{s}}} = \frac {\boldsymbol {I}_{\text{s}}}{I}\). Here, the scaling factor, I, for spin current is defined as I = qγμ 0 M s N s. The time scale is normalized using the factor (γμ 0 M s)−1. The advantages of the normalized equation Eq. (5.2) over Eq. (5.1) are: (a) it is easier to deal with normalized quantities in terms of numerical complexity, and (b) normalized entities are mathematically well behaved under the application of a numerical scheme. The explicit form of Eq. (5.2) obtained by decoupling d mdt is given as

$$\displaystyle \begin{aligned} \frac{d\boldsymbol{m}}{dt} = &-\frac{1}{1+\alpha^2} [ \boldsymbol{m} \times \boldsymbol{h}_{\text{eff}} + (\boldsymbol{m} \times (\boldsymbol{m} \times \boldsymbol{i}_{\text{s}}))\\ &+ \alpha \left( \boldsymbol{m} \times( \boldsymbol{m} \times \boldsymbol{h}_{\text{eff}}))- \alpha (\boldsymbol{m} \times \boldsymbol{i}_{\text{s}} \right)]. \end{aligned} $$
(5.3)

To model the thermal field in s-LLGS, it in expressed in terms of the Wiener process as H T(t)dt = νd W(t) [Aqu+ 06], where W(t) is the Wiener process, and \(\nu =\sqrt {\frac {2\alpha K_{\text{b}}T}{\mu _0 M_{\text{s}}^2 V }}\) [Sun06, MNY12]. Here, K b T is the thermal energy. The statistical properties of this thermal field discussed by Brown and Kubo are given as [Bro63, KH70]

  1. (1)

    The mean thermal field: 〈H T,i(t)〉 = 0,

  2. (2)

    The correlation between the components of H T(t) defined over a time interval τ,

    $$\displaystyle \begin{aligned} \langle \boldsymbol{H}_{\text{T},i}(t)\boldsymbol{H}_{\text{T},j}(t+\tau) \rangle = \frac{2K_{\text{b}}T\alpha}{\gamma \mu_0^2 M_{\text{s}} V}\delta_{ij}\delta(\tau), \end{aligned} $$
    (5.4)

    where δ ij is the Kronecker delta function. To simulate the thermal effects numerically, the model is discretized in time

    $$\displaystyle \begin{aligned} \boldsymbol{H}_{\text{T}}(t) \Delta t = \nu \Delta \boldsymbol{W}(t), \end{aligned} $$
    (5.5)

    where ΔW(t) = W(t +  Δt) −W(t). The normalized standard deviation of the thermal field is given by

    $$\displaystyle \begin{aligned} \sigma = \sqrt{\frac{2\alpha K_{\text{b}}T}{\mu_0 M_{\text{s}}^2 V}} \sqrt{ \frac{\Delta t' }{\gamma \mu_0 M_{\text{s}}} }, \end{aligned} $$
    (5.6)

    where Δt is the time step of the numerical method used and t′ = (γμ 0 M s)t.

We then have

$$\displaystyle \begin{aligned} \boldsymbol{h}_{\text{T}}(t) \Delta t' = \sigma \xi_t, \end{aligned} $$
(5.7)

where the normalized thermal field h T = H TM s, and \(\xi _t \sim \mathcal {N}(0,1)\) is a standard Gaussian vector.

Now, the total normalized effective field is given as

$$\displaystyle \begin{aligned} \boldsymbol{h}_{\text{eff}} &= \frac{\boldsymbol{H}_{\text{eff}}}{M_{\text{s}}} = \frac{-1}{\mu_0 M_{\text{s}} V}\nabla_{\boldsymbol{M}}E_{\text{total}}(\boldsymbol{M}) + \boldsymbol{h}_{\text{T}}\\ &= \boldsymbol{h}_{\text{app}} + \frac{H_{\text{k}}}{M_{\text{s}}}(\hat{\boldsymbol{n}} \cdot \boldsymbol{m}) \hat{\boldsymbol{n}} - \sum_i N_i\boldsymbol{m}_i +\boldsymbol{h}_{\text{T}}, \end{aligned} $$
(5.8)

where \(\boldsymbol {h}_{\text{app}} = \frac {\boldsymbol {H}_{\text{app}}}{M_{\text{s}}}, \boldsymbol {m}_i = \frac {\boldsymbol {M}_i}{M_{\text{s}}},\) and ∇M is the gradient with respect to the magnetization M.

Appendix 2

A brief description of the various tests encompassed in the NIST SP 800-22 statistical test suite [Ruk+ 01] is given below.

  1. 1.

    Frequency (Monobit) Test: Evaluates proportion of ones and zeroes in the entire sequence.

  2. 2.

    Frequency Test within a Block: Divides entire sequence into n-bit blocks and then evaluates proportion of ones within each n-bit block.

  3. 3.

    Runs Test: Evaluates the number of uninterrupted runs of identical bits in the sequence.

  4. 4.

    Test for the Longest-Run-of-Ones in a Block: Determines the longest uninterrupted sequence of ones in n-bit blocks.

  5. 5.

    Binary Matrix Rank Test: Constructs disjoint sub-matrices of the entire sequence and then evaluates their rank.

  6. 6.

    Discrete Fourier Transform (DFT) Test: Detects periodic features and peaks in the DFT spectrum of the sequence.

  7. 7.

    Non-overlapping Template Matching Test: Matches the sequence against m-bit target string templates in a non-overlapping fashion and returns the number of such occurrences.

  8. 8.

    Overlapping Template Matching Test: Matches the sequence against m-bit target string templates in an overlapping fashion and returns the number of such occurrences.

  9. 9.

    Maurer’s Universal Statistical Test: Identifies similar patterns in the sequence and then evaluates the number of bits between such matching patterns.

  10. 10.

    Linear Complexity Test: Calculates the length of a linear feedback shift register for the sequence.

  11. 11.

    Serial Test: Determines the frequency of all possible overlapping n-bit patterns in the sequence.

  12. 12.

    Approximate Entropy Test: Determines the frequency of all possible overlapping n-bit and (n+1)-bit patterns in the sequence and compares them against statistics for an ideal random sequence.

  13. 13.

    Cumulative Sums Test: Converts the sequence of ones and zeroes to (1,−1) and then calculates the maximum excursion (from 0) of a random walk defined by the cumulative sum of the new sequence.

  14. 14.

    Random Excursions Test: Evaluates the number of states having K visits in the cumulative sum random walk defined in the previous test.

  15. 15.

    Random Excursions Variant Test: Evaluates the number of visits to various states in the cumulative sum random walk defined in the previous tests.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Rangarajan, N., Patnaik, S., Knechtel, J., Rakheja, S., Sinanoglu, O. (2021). Intrinsic Entropy for True Random Number Generation. In: The Next Era in Hardware Security. Springer, Cham. https://doi.org/10.1007/978-3-030-85792-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85792-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85791-2

  • Online ISBN: 978-3-030-85792-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics