Skip to main content

Nutritional Regulation of Embryonic Survival, Growth, and Development

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Abstract

Maternal nutritional status affects conceptus development and, therefore, embryonic survival, growth, and development. These effects are apparent very early in pregnancy, which is when most embryonic losses occur. Maternal nutritional status has been shown to affect conceptus growth and gene expression throughout the periconceptual period of pregnancy (the period immediately before and after conception). Thus, the periconceptual period may be an important “window” during which the structure and function of the fetus and the placenta are “programmed” by stressors such as maternal malnutrition, which can have long-term consequences for the health and well-being of the offspring, a concept often referred to as Developmental Origins of Health and Disease (DOHaD) or simply developmental programming. In this review, we focus on recent studies, using primarily animal models, to examine the effects of various maternal “stressors,” but especially maternal malnutrition and Assisted Reproductive Techniques (ART, including in vitro fertilization, cloning, and embryo transfer), during the periconceptual period of pregnancy on conceptus survival, growth, and development. We also examine the underlying mechanisms that have been uncovered in these recent studies, such as effects on the development of both the placenta and fetal organs. We conclude with our view of future research directions in this critical area of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Assisted Reproductive Techniques

DOHaD:

Developmental Origins of Health and Disease

ET:

Embryo Transfer

IVP:

In Vitro Embryo Production

IVF:

In Vitro Fertilization

mTOR:

Mechanistic Target of Rapamycin

NCDs:

Non-communicable Diseases

PI3K:

Phosphoinositide 3-kinase

PPAR:

Peroxisome Proliferator-Activated Receptor

References

  • Aizer A, Currie J (2014) The intergenerational transmission of inequality: maternal disadvantage and health at birth. Science 344:856–861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnold DR, Bordignon V, Rj L, Murphy BD, Smith LC (2006) Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos. Reproduction 132:279–290

    Article  PubMed  CAS  Google Scholar 

  • Bairagi S, Quinn KE, Crane AR, Ashley RL, Borowicz PP, Caton JS, Redden RR, Grazul-Bilska AT, Reynolds LP (2016) Maternal environment and placental vascularization in small ruminants. Theriogenology 86:288–305

    Article  PubMed  CAS  Google Scholar 

  • Barker DJP (1992) Fetal and infant origins of adult disease. BMJ Publishing Group, London, England

    Google Scholar 

  • Barker DJ (2004) The developmental origins of well-being. Philos Trans R Soc Lond B Biol Sci 359:1359–1366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592:2357–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazer F, Johnson G, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Google Scholar 

  • Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L (2004) Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 71:185–193

    Article  PubMed  CAS  Google Scholar 

  • Been JV, Nurmatov UB, Cox B, Nawrot TS, van Schayck CP, Sheikh A (2014) Effect of smoke-free legislation on perinatal and child health: a systematic review and meta-analysis. Lancet 383:1549–1560

    Article  PubMed  Google Scholar 

  • Bellingham M, Fowler PA, Amezaga MR, Whitelaw CM, Rhind SM, Cotinot C, Mandon-Pepin B, Sharpe RM, Evans NP (2010) Foetal hypothalamic and pituitary expression of gonadotrophin-releasing hormone and galanin systems is disturbed by exposure to sewage sludge chemicals via maternal ingestion. J Neuroendocrinol 22:527–533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhutta ZA, Salam RA (2012) Global nutrition epidemiology and trends. Ann Nutr Metab 61(Suppl 1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield FH, Oliver MH, Hawkins P, Campbell M, Phillips DJ, Gluckman PD, Challis JRG, Harding JE (2003) A periconceptional nutritional origin for noninfectious preterm birth. Science 300:606

    Article  PubMed  Google Scholar 

  • Borowicz PP, Arnold DR, Johnson ML, Grazul-Bilska AT, Redmer DA, Reynolds LP (2007) Placental growth throughout the last two thirds of pregnancy in sheep: Vascular development and angiogenic factor expression. Biol Reprod 76:259–267

    Article  PubMed  CAS  Google Scholar 

  • Borowicz PP (2008) Maternal factors affecting placental vascular development in sheep. Dissertation, North Dakota State University, Fargo, ND, USA

    Google Scholar 

  • Burton GJ, Fowden AL (2015) The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 370:20140066

    Article  PubMed  PubMed Central  Google Scholar 

  • Canovas S, Ivanova E, Romar R, García-Martínez S, Soriano-Úbeda C, García-Vázquez FA, Saadeh H, Andrews S, Kelsey G, Coy P (2017) DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife 6:e23670

    Google Scholar 

  • Caton JS, Crouse MS, Reynolds LP, Neville TL, Dahlen CR, Ward AK, Swanson KC (2019) Board invited review: maternal nutrition and programming of offspring energy requirements. Transl Anim Sci 3:976–990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caton JS, Crouse MS, McLean KJ, Dahlen CR, Ward AK, Cushman RA, Grazul-Bilska AT, Neville BW, Borowicz PP, Reynolds LP (2020) Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle. J Anim Sci 98:skaa358

    Google Scholar 

  • Che L, Yang Z, Xu M, Xu S, Che L, Lin Y, Fang Z, Feng B, Li J, Chen D, Wu D (2017) Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genomics 18:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cline HJ, Neville BW, Lardy GP, Caton JS (2009) Influence of advancing season on dietary composition, intake, site of digestion, and microbial efficiency in beef steers grazing a native range in western North Dakota. J Anim Sci 87:375–383

    Article  PubMed  CAS  Google Scholar 

  • Cline HJ, Neville BW, Lardy GP, Caton JS (2010) Influence of advancing season on dietary composition, intake, site of digestion, and microbial efficiency in beef steers grazing season-long or twice-over rotation native range pastures in western North Dakota. J Anim Sci 88:2812–2824

    Article  PubMed  CAS  Google Scholar 

  • Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Constancia M, Fowden AL (2010) Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol 588:527–538

    Article  PubMed  CAS  Google Scholar 

  • Copping KJ, Hoare A, Callaghan M, McMillen IC, Rodgers RJ, Perry VEA (2014) Fetal programming in 2-year-old calving heifers: peri-conception and first trimester protein restriction alters fetal growth in a gender-specific manner. Anim Prod Sci 54:1333–1337

    Article  CAS  Google Scholar 

  • Copping KJ, Hernandez-Medrano J, Hoare A, Hummitzsch K, McMillen IC, Morrison JL, Rodgers RJ, Perry VEA (2020) Maternal periconceptional and first trimester protein restriction in beef heifers: Effects on placental parameters and fetal and neonatal calf development. Reprod Fertil Dev 32:495–507

    Article  PubMed  CAS  Google Scholar 

  • Coy P, Yanagimachi R (2015) The common and species-specific roles of oviductal proteins in mammalian fertilization and embryo development. Bioscience 65:973–984

    Article  Google Scholar 

  • Cross JC, Mickelson L (2006) Nutritional influences on implantation and placental development. Nutr Rev 64(suppl 2):S12–S18

    Article  PubMed  Google Scholar 

  • Crouse MS, McLean KJ, Greseth NP, Crosswhite MR, Pereira NN, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2017) Maternal nutrition and stage of early pregnancy in beef heifers: impacts on expression of glucose, fructose, and cationic amino acid transporters in utero-placental tissues. J Anim Sci 95:5563–5572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crouse MS, Caton JS, Cushman RA, McLean KJ, Dahlen CR, Borowicz PP, Reynolds LP, Ward AK (2019a) Moderate nutrient restriction of beef heifers alters expression of genes associated with tissue metabolism, accretion, and function in fetal liver, muscle, and cerebrum by day 50 of gestation. Transl Anim Sci 3:855–866

    Google Scholar 

  • Crouse MS, Greseth NP, McLean KJ, Crosswhite MR, Pereira NN, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2019b) Maternal nutrition and stage of early pregnancy in beef heifers: impacts on hexose and AA concentrations in maternal and fetal fluids. J Anim Sci 97:1296–1316

    Google Scholar 

  • Crouse MS, McLean KJ, Greseth NP, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2020) The effects of maternal nutrient restriction and day of early pregnancy on the location and abundance of neutral amino acid transporters in beef heifer utero-placental tissues. J Anim Sci 98:skaa197

    Google Scholar 

  • Crouse MS, McLean KJ, Dwamena J, Neville TL, Menezes ACB, Ward AK, Reynolds LP, Dahlen CR, Neville BW, Borowicz PP, Caton JS (2021a) The effects of maternal nutrition during the first 50 days of gestation on the location and abundance of hexose and cationic amino acid transporters in beef heifer utero-placental tissues. J Anim Sci 99:skaa386

    Google Scholar 

  • Crouse MS, McCarthy KL, Menezes ACB, Kasseta CJ, Baumgaertner F, Kirsch JD, Dorsam S, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, Dahlen CR (2021b). Vitamin and mineral supplementation and rate of gain during the first trimester of gestation affect the abundance of fat-soluble vitamins in fetal liver at d 83 of gestation. J Anim Sci Abstr (in press)

    Google Scholar 

  • de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ (2010) Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci USA 107:16881–16886

    Google Scholar 

  • Diniz WJS, Crouse MS, Cushman RA, McLean KJ, Caton JS, Dahlen CR, Reynolds LP, Ward AK (2021a) Cerebrum, liver, and muscle regulatory networks uncover maternal nutrition effects in developmental programming of beef cattle during early pregnancy. Sci Rep 11:2771

    Google Scholar 

  • Diniz WJS, Reynolds LP, Borowicz PP, Ward AK, Sedivec KK, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Forcherio JC, Scott RR, Caton JS, Dahlen CR (2021b) Maternal vitamin and mineral supplementation and rate of maternal weight gain affects placental expression of energy metabolism and transport-related genes. Genes 12:385

    Google Scholar 

  • Diskin MK, Kenny DA (2014) Optimising reproductive performance of beef cows and replacement heifers. Animal 8(s1):27–39

    Article  PubMed  CAS  Google Scholar 

  • Dupont C, Cordier AG, Junien C, Mandon-Pépin B, Levy R, Chavatte-Palmer P (2012) Maternal environment and the reproductive function of the offspring. Theriogenology 78:1405–1414

    Article  PubMed  CAS  Google Scholar 

  • Farin PW, Piedrahita JA, Farin CE (2006) Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65:178–191

    Article  PubMed  Google Scholar 

  • Fidanza A, Toschi P, Zacchini F, Czernik M, Palmieri C, Scapolo P, Modlinski JA, Loi P, Ptak GE (2014) Impaired placental vasculogenesis compromises the growth of sheep embryos developed in vitro. Biol Reprod 91:21

    Article  PubMed  CAS  Google Scholar 

  • Fowden AL, Forhead AJ (2009) Hormones as epigenetic signals in developmental programming. Exp Physiol 94:607–625

    Article  PubMed  CAS  Google Scholar 

  • Galbally M, Snellen M, Power J (2014) Antipsychotic drugs in pregnancy: a review of their maternal and fetal effects. Ther Adv Drug Saf 5:100–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauvin MC, Pillai SM, Reed SA et al (2020) Poor maternal nutrition during gestation in sheep alters prenatal muscle growth and development in offspring. J Anim Sci 98:1–15

    Article  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Article  PubMed  Google Scholar 

  • Grazul-Bilska AT, Borowczyk E, Bilski JJ, Reynolds LP, Redmer DA, Caton JS, Vonnahme KA (2012) Overfeeding and underfeeding have detrimental effects on oocyte quality measured by in vitro fertilization and early embryonic development in sheep. Domest Anim Endocrinol 43:289–298

    Google Scholar 

  • Grazul-Bilska AT, Johnson ML, Borowicz PP, Baranko L, Redmer DA, Reynolds LP (2013) Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation. Theriogenology 79:94–102

    Article  PubMed  CAS  Google Scholar 

  • Grazul-Bilska AT, Johnson ML, Borowicz PP, Bilski JJ, Cymbaluk T, Norberg S, Redmer DA, Reynolds LP (2014) Placental development during early pregnancy in sheep: effects of embryo origin on vascularization. Reproduction 147:639–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greseth NP, Crouse MS, McLean KJ, Crosswhite MR, Negrin Pereira N, Dahlen CR, Borowicz PP, Reynolds LP, Ward AK, Neville BW, Caton JS (2017) The effects of maternal nutrition on the messenger ribonucleic acid expression of neutral and acidic amino acid transporters in bovine uteroplacental tissues from day sixteen to fifty of gestation. J Anim Sci 95:4668–4676

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q (2015) Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 72:251–271

    Article  PubMed  CAS  Google Scholar 

  • Hellemans KGC, Sliwowska JH, Verma P, Weinberg J (2010) Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci Biobehav Rev 34:791–807

    Article  PubMed  CAS  Google Scholar 

  • Hostetler CE, Kincaid RL, Mirando MA (2003) The role of essential trace elements in embryonic and fetal development in livestock. Vet J 166:125–139

    Article  PubMed  CAS  Google Scholar 

  • Hyatt MA, Gopalakrishnan GS, Bispham J, Gentili S, McMillen IC, Rhind SM, Rae MT, Kyle CE, Brooks AN, Jones C, Budge H, Walker D, Stephenson T, Symonds ME (2007) Maternal nutrient restriction in early pregnancy programs hepatic mRNA expression of growth-related genes and liver size in adult male sheep. J Endocrinol 192:87–97

    Article  PubMed  CAS  Google Scholar 

  • Jacometo CB, Osorio JS, Socha M, Corrêa MN, Piccioli-Cappelli F, Trevisi E, Loor JJ (2015) Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress. J Dairy Sci 98:7717–7729

    Article  PubMed  CAS  Google Scholar 

  • Jankovic-Karasoulos T, Furness DL, Leemaqz SY, Dekker GA, Grzeskowiak LE, Grieger JA, Andraweera PH, McCullough D, McAninch D, McCowan LM, Bianco-Miotto T, Roberts CT (2021) Maternal folate, one-carbon metabolism and pregnancy outcomes. Matern Child Nutr 17:e13064

    Google Scholar 

  • Johnson JA, Caton JS, Poland W, Kirby DR, Dhuyvetter DV (1998) Influence of season on dietary composition, intake, and digestion by beef steers grazing mixed-grass prairie in the Northern Great Plains. J Anim Sci 76:1682–1690

    Article  PubMed  CAS  Google Scholar 

  • Johnson ML, Redmer DA, Reynolds LP, Grazul-Bilska AT (2017) Gap junctional connexin messenger RNA expression in the ovine uterus and placenta: effects of estradiol-17β-treatment, early pregnancy stages, and embryo origin. Domest Anim Endocrinol 58:104–112

    Google Scholar 

  • Jonker H, Capelle N, Lanes A, Wen SW, Walker M, Corsi DJ (2020) Maternal folic acid supplementation and infant birthweight in low- and middle-income countries: a systematic review. Matern Child Nutr 16:e12895

    Google Scholar 

  • Juul A, Almstrup K, Andersson A-M, Jensen TK, Jørgensen N, Main KM, Rajpert-De Meyts E, Toppari J, Skakkebæk NE (2014) Possible fetal determinants of male infertility. Nat Rev Endocrinol 10:553–562

    Article  PubMed  CAS  Google Scholar 

  • Krysl LJ, Galyean ML, Wallace JD, McCollum FT, Judkins MB, Branine ME, Caton JS (1987) Cattle nutrition on blue grama rangeland in New Mexico Bulletin 727. Las Cruces, NM, USA

    Google Scholar 

  • Kumarasamy V, Mitchell MD, Bloomfield FH, Oliver MH, Campbell ME, Challis JRG, Harding JE (2005) Effects of periconceptional undernutrition on the initiation of parturition in sheep. Am J Physiol 288:R67–R72

    CAS  Google Scholar 

  • Latham MC (1997) Human nutrition in the developing world. Food and Nutrition Series No. 29 Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Loi P, Clinton M, Vackova I, Fulka J, Feil R, Palmieri C, Salda LD, Ptak G (2006) Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 65:1110–1121

    Article  PubMed  Google Scholar 

  • Luther JS, Windorski EJ, Schauer CS, Kirsch JD, Vonnahme KA, Reynolds LP, Caton JS, Wu G (2008) Impacts of L-arginine on ovarian function and reproductive performance in ewes. J Anim Sci 86(E-Suppl 2)/J Dairy Sci 9(E-Suppl 1): ii (Abstr LB5)

    Google Scholar 

  • Lyon P, Strippoli V, Fang B, Cimmino L (2020) B Vitamins and one-carbon metabolism: implications in human health and disease. Nutrients 12:2867

    Article  PubMed Central  CAS  Google Scholar 

  • Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS (2003) Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta 24:219–226

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Wijesekara J, Baker PN, Ong SS (2004) Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by pre-eclampsia. Placenta 25:829–833

    Article  PubMed  CAS  Google Scholar 

  • McCarthy KL (2019) Energy and mineral supplementation strategies for beef cattle grazing the northern great plains. Dissertation, North Dakota State University, Fargo, USA

    Google Scholar 

  • McCarthy KL, Nestande J, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton J, Dahlen CR (2020) Effects of feeding vitamin and mineral and (or) energy supplements to beef heifers during the first 83 days of gestation on progesterone concentrations, corpus luteum size, and fetal body measurements. J Anim Sci 98(Supplement 4):161–162

    Article  PubMed Central  Google Scholar 

  • McLean KJ, Crouse MS, Crosswhite MR, Negrin Pereira N, Dahlen CR, Borowicz PP, Reynolds LP, Ward AK, Neville BW, Caton JS (2017) Impacts of maternal nutrition on uterine and placental vascularity and mRNA expression of angiogenic factors during the establishment of pregnancy in beef heifers. Transl Anim Sci 1:160–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLean KJ, Crouse MS, Crosswhite MR, Negrin Pereira N, Dahlen CR, Borowicz PP, Reynolds LP, Ward AK, Neville BW, Caton JS (2018) The effects of nutrient restriction on mRNA expression of endogenous retroviruses, interferon-tau, and pregnancy-specific protein-B during the establishment of pregnancy in beef heifers. J Anim Sci 96:950–963

    Article  PubMed  PubMed Central  Google Scholar 

  • Menezes ACB, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam S, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, Dahlen CR (2021a) Vitamin and mineral supplementation and rate of gain during the first trimester of gestation affect concentrations of amino acids in maternal serum and allantoic fluid of beef heifers. J Anim Sci 99:skab024

    Google Scholar 

  • Menezes ACB, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, and Dahlen CR (2021b) Vitamin and mineral supplementation and rate of gain in beef heifers: Effects on fetal trace mineral reserves at day 83 of gestation. J Anim Sci Abstr (in Press)

    Google Scholar 

  • Miles JR, Farin CE, Rodriguez KF, Alexander JE, Farin PW (2004) Angiogenesis and morphometry of bovine placentas in late gestation from embryos produced in vivo or in vitro. Biol Reprod 71:1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Miles JR, Farin CE, Rodriguez KF, Alexander JE, Farin PW (2005) Effects of embryo culture on angiogenesis and morphometry of bovine placentas during early gestation. Biol Reprod 73:663–671

    Article  PubMed  CAS  Google Scholar 

  • Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD (2015) Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A 184:113–124

    Article  CAS  Google Scholar 

  • Nettle D, Frankenhuis WE, Rickard IJ (2013) The evolution of predictive adaptive responses in human life history. Proc Royal Soc b: Biological Sciences 280:20131343

    Article  Google Scholar 

  • Nilsson E, Ben Maamar M, Skinner MK (2019) Definition of epigenetic transgenerational inheritance and biological impacts. In: Tollefsbol TO (ed) Transgenerational epigenetics, vol 13. 2nd ed. Elsevier, Cambridge, MA, pp 13–24

    Google Scholar 

  • Oliver MH, Jaquiery AL, Bloomfield FH, Harding JE (2007) The effects of maternal nutrition around the time of conception on the health of the offspring. Soc Reprod Fertil Suppl 64:397–410

    PubMed  CAS  Google Scholar 

  • Oostingh EC, Hall J, Koster MPH, Grace B, Jauniaux E, Steegers-Theunissen RPM (2019) The impact of maternal lifestyle factors on periconception outcomes: a systematic review of observational studies. Reprod BioMed Online 38:77–94

    Article  PubMed  Google Scholar 

  • Palmieri C, Loi P, Reynolds LP, Ptak G, Della Salda L (2007) Placental abnormalities in ovine somatic cell clones at term: a light and electron microscopic investigation. Placenta 28:577–584

    Article  PubMed  CAS  Google Scholar 

  • Palmieri C, Loi P, Ptak G, Della Salda L (2008) A review of the pathology of abnormal placentae of somatic cell nuclear transfer clone pregnancies in cattle, sheep, and mice. Vet Pathol 45:865–880

    Article  PubMed  CAS  Google Scholar 

  • Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D’Andrea M, Loor JJ (2021) Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 22:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinn KE, Reynolds LP, Grazul-Bilska AT, Borowicz PP, Ashley RL (2016) Placental development during early pregnancy: effects of embryo origin on expression of chemokine ligand twelve (CXCL12). Placenta 43:77–80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Redmer DA, Wallace JM, Reynolds LP (2004) Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest Anim Endocrinol 27:199–217

    Article  PubMed  CAS  Google Scholar 

  • Redmer DA, Aitken RP, Milne JS, Reynolds LP, Wallace JM (2005) Influence of maternal nutrition on messenger RNA expression of placental angiogenic factors and their receptors at midgestation in adolescent sheep. Biol Reprod 72:1004–1009

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Caton JS (2012) Role of the pre- and post-natal environment in developmental programming of health and productivity. Mol Cell Endocrinol 354:54–59

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Redmer DA (1995) Utero-placental vascular development and placental function. J Anim Sci 73:1839–1851

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Redmer DA (2001) Angiogenesis in the placenta. Biol Reprod 64:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Vonnahme KA (2016) Triennial reproduction symposium: developmental programming of fertility. J Anim Sci 94:2699–2704

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Vonnahme KA (2017) Livestock as models for developmental programming. Anim Front 7:12–17

    Article  Google Scholar 

  • Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, Luther JS, Wallace JM, Wu G, Spencer TE (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572:51–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Vonnahme KA, Luther JS, Buchanan DS, Hafez SA, Grazul-Bilska AT, Redmer DA (2010a) Uteroplacental vascular development and placental function: an update. Int J Dev Biol 54:355–366

    Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Vonnahme KA, Luther JS, Hammer CJ, Maddock Carlin KR, Grazul-Bilska AT, Redmer DA (2010b) Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. J Anim Sci 88 (E. Suppl):E61–E72

    Google Scholar 

  • Reynolds LP, Vonnahme KA, Lemley CO, Redmer DA, Grazul-Bilska AT, Borowicz PP, Caton JS (2013) Maternal stress and placental vascular function and remodeling. Curr Vasc Pharmacol 11:564–593

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Borowicz PP, Palmieri C, Grazul-Bilska AT (2014) Placental vascular defects in compromised pregnancies. Adv Exp Med Biol 814:193–204

    Article  PubMed  Google Scholar 

  • Reynolds LP, Ward AK, Caton JS (2017) Epigenetics and developmental programming in ruminants: Long-term impacts on growth and development. In: Scanes CF, Hill R (eds) Biol domest anim. CRC Press/Taylor & Francis Group, Milton Park, UK, pp 85–121

    Chapter  Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK (2019) Developmental programming of fetal growth and development. Vet Clin North Am Food Anim Pract 35:229–247

    Article  PubMed  Google Scholar 

  • Schulz LC (2010) The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci USA 107:16757–16758

    Google Scholar 

  • Sinclair KD, Singh R (2007) Modelling the developmental origins of health and disease in the early embryo. Theriogenology 67:43–53

    Article  PubMed  Google Scholar 

  • Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 104:19351–19356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398:4–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steegers-Theunissen RPM, Twigt J, Pestinger V, Sinclair KD (2013) The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update 19:640–655

    Article  PubMed  CAS  Google Scholar 

  • UNICEF (2019) The State of the World’s Children 2019. Children, food and nutrition: growing well in a changing world. United Nations Children’s Fund, New York. https://www.unicef.org/media/60806/file/SOWC-2019.pdf

  • UNSCN (2021) The UN Decade of Action on Nutrition 2016–2025. United Nations System Standing Committee on Nutrition. https://www.unscn.org/en/topics/un-decade-of-action-on-nutrition

  • Van Emon M, Sanford C, McCoski S (2020) Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals 10:2404

    Article  PubMed Central  Google Scholar 

  • Vickers MH (2014) Developmental programming and transgenerational transmission of obesity. Ann Nutr Metab 64(Suppl 1):26–34

    Article  PubMed  CAS  Google Scholar 

  • Vonnahme KA (2012) How the maternal environment impacts fetal and placental development: implications for livestock production. Anim Reprod 9:789–797

    Google Scholar 

  • Vonnahme KA, Lemley CO, Shukla P, O’Rourke ST (2013) 2011 and 2012 early careers achievement awards: placental programming: how the maternal environment can impact placental function. J Anim Sci 91:2467–2480

    Article  PubMed  CAS  Google Scholar 

  • Wallace JM, Luther JS, Milne JS, Aitken RP, Redmer DA, Reynolds LP, Hay WW (2006) Nutritional modulation of adolescent pregnancy outcome—a review. Placenta 27:61–68

    Article  CAS  Google Scholar 

  • WHO (2016) Good maternal nutrition: the best start in life. WHO Regional Office for Europe, Copenhagen, Denmark. https://www.euro.who.int/__data/assets/pdf_file/0008/313667/Good-maternal-nutrition-The-best-start-in-life.pdf

  • Woods L, Perez-Garcia V, Hemberger M (2018) Regulation of placental development and its impact on fetal growth—new insights from mouse models. Front Endocrinol 9:570

    Article  Google Scholar 

  • Wu G (2022) Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1–24

    Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) BOARD-INVITED REVIEW: Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Google Scholar 

  • Young LE, Fairburn HR (2000) Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology 53:627–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support for our studies described in this paper, including the Agriculture and Food Research Initiative of the National Institute of Food and Agriculture, U.S. Department of Agriculture; the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Heart, Lung and Blood Institute, both of the U.S. National Institutes of Health, U.S. Department of Health and Human Services; Purina Animal Nutrition LLC; the North Dakota State Board of Agricultural Research and Education; and the North Dakota Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reynolds, L.P. et al. (2022). Nutritional Regulation of Embryonic Survival, Growth, and Development. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_4

Download citation

Publish with us

Policies and ethics