Skip to main content

Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health

  • Chapter
  • First Online:
Recent Advances in Animal Nutrition and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1354))

Abstract

There is growing interest in the use of intestinal mucosal products and peptones (partial protein hydrolysates) to enhance the food intake, growth, development, and health of animals. The mucosa of the small intestine consists of the epithelium, the lamina propria, and the muscularis mucosa. The diverse population of cells (epithelial, immune, endocrine, neuronal, vascular, and elastic cells) in the intestinal mucosa contains not only high-quality food protein (e.g., collagen) but also a wide array of low-, medium-, and high-molecular-weight functional molecules with enormous nutritional, physiological, and immunological importance. Available evidence shows that intestinal mucosal products and peptones provide functional substances, including growth factors, enzymes, hormones, large peptides, small peptides, antimicrobials, cytokines, bioamines, regulators of nutrient metabolism, unique amino acids (e.g., taurine and 4-hydroxyproline), and other bioactive substances (e.g., creatine and glutathione). Therefore, dietary supplementation with intestinal mucosal products and peptones can cost-effectively improve feed intake, immunity, health (the intestine and the whole body), well-being, wound healing, growth performance, and feed efficiency in livestock, poultry, fish, and crustaceans. In feeding practices, an inclusion level of an intestinal mucosal product or a mucosal peptone product at up to 5% (as-fed basis) is appropriate in the diets of these animals, as well as companion and zoo animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Sadi R, Boivin M, Ma T (2009) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci 14:2765–2778

    Article  PubMed Central  CAS  Google Scholar 

  • Angers K, Haddad N, Selmaoui B, Thibault L (2003) Effect of melatonin on total food intake and macronutrient choice in rats. Physiol Behav 80:9–18

    Article  PubMed  CAS  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. SpringerPlus 3:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Seo H, Johnson GA, Wu G (2021) One-carbon metabolism and development of the conceptus during pregnancy: lessons from studies with sheep and pigs. Adv Exp Med Biol 1285:1–15

    Article  PubMed  Google Scholar 

  • Beaumont M, Blachier F (2020) Amino acids in intestinal physiology and health. Adv Exp Med Biol 1265:1–20

    Article  PubMed  CAS  Google Scholar 

  • Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Rev Microbiol 9:356–368

    Article  CAS  Google Scholar 

  • Burrin DG, Petersen Y, Stoll B, Sangild P (2001) Glucagon-like peptide 2: a nutrient-responsive gut growth factor. J Nutr 131:709–712

    Article  PubMed  CAS  Google Scholar 

  • Che DS, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G (2021) Amino acids in the nutrition, metabolism, and health of domestic cats. Adv Exp Med Biol 1285:217–231

    Article  PubMed  Google Scholar 

  • Chen JQ, Yang YC, Yang C, Dai ZL, Kim IH, Wu G, Wu ZL (2021) Dietary supplementation with glycine enhances intestinal mucosal integrity and ameliorates inflammation in C57BL/6J mice with high-fat diet-induced obesity. J Nutr 151:1769–1778

    Article  PubMed  Google Scholar 

  • Cromwell GL (2006) Rendered products in swine nutrition. In: Meeker DL and Hamilton CR (eds) Essential Rendering National renderers association, Alexandria, VA, USA. pp 141–157

    Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • Dignass AU, Sturm A (2001) Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol 13:763–770

    Article  PubMed  CAS  Google Scholar 

  • Dillon EL, Wu G (2021) Cortisol enhances ctrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids. https://doi.org/10.1007/s00726-021-03039-y

  • Drozdowski L, Thomson AB (2009) Intestinal hormones and growth factors: effects on the small intestine. World J Gastroenterol 15:385–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvorák B, Stephana AL, Holubec H, Williams CS, Philipps AF, Koldovskoý O (1996) Insulin-like growth factor-I (IGF-I) mRNA in the small intestine of suckling and adult rats. FEBS Lett 388:155–160

    Article  PubMed  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 8:872–879

    Article  Google Scholar 

  • Ferraris RP (1994) Regulation of intestinal nutrient transport. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1821–1844

    Google Scholar 

  • Flynn NE, Shaw MH, Becker JT (2020) Amino acids in health and endocrine function. Adv Exp Med Biol 1265:97–109

    Article  PubMed  CAS  Google Scholar 

  • Gietzen DW, Hao S, Anthony TG (2007) Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr 27:63–78

    Article  PubMed  CAS  Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Article  PubMed  Google Scholar 

  • Halloran KM, Stenhouse C, Wu G, Bazer FW (2021) Arginine, agmatine and polyamines: key regulators of conceptus development in mammals. Adv Exp Med Biol 1332:85–105

    Article  PubMed  Google Scholar 

  • Hansen MB, Witte AB (2008) The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol (oxf) 193:311–323

    Article  CAS  Google Scholar 

  • Hardin JA, Gall DG (1992) The effect of TGF alpha on intestinal solute transport. Regul Pept 39:169–176

    Article  PubMed  CAS  Google Scholar 

  • Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50:428–558

    Article  PubMed  CAS  Google Scholar 

  • He WL, Wu G (2020) Metabolism of amino acids in the brain and their roles in regulating food intake. Adv Exp Med Biol 1265:167–185

    Article  PubMed  CAS  Google Scholar 

  • He WL, Li P, Wu G (2021a) Amino acid nutrition and metabolism in chickens. Adv Exp Med Biol 1285:109–131

    Google Scholar 

  • He WL, Furukawa K, Toyomizu M, Nochi T, Bailey CA, Wu G (2021b) Interorgan metabolism, nutritional impacts, and safety of dietary L-glutamate and L-glutamine in poultry. Adv Exp Med Biol 1332:107–128

    Google Scholar 

  • Herring CM, Bazer FW, Wu G (2021) Amino acid nutrition for optimum growth, development, reproduction, and health of zoo animals. Adv Exp Med Biol 1285:233–253

    Article  PubMed  Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou YQ, Wu G (2018) L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou YQ, Wu ZL, Dai ZL, Wang GH, Wu G (2017) Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Li XL, Dai ZL, Wu ZL, Bazer FW, Wu G (2018) Analysis of glutathione in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde. Methods Mol Biol 1694:105–115

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Hu SD, He WL, Wu G (2021) Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids. https://doi.org/10.1007/s00726-021-03056-x

  • Ji Y, Dai ZL, Sun S, Ma X, Yang Y, Tso O, Wu G, Wu ZL (2018) Hydroxyproline attenuates dextran sulfate sodium-induced colitis in mice: Involvment of the NF-kB signaling and oxidative stress. Mol Nutr Food Res 62:e1800494

    Article  PubMed  Google Scholar 

  • Jia SC, Li XY, He WL, Wu G (2021) Oxidation of energy substrates in tissues of fish: Metabolic significance and implications for gene expression and carcinogenesis. Adv Exp Med Biol 1332:67–83

    Article  PubMed  Google Scholar 

  • Jia SC, Li XY, He WL, Wu G (2022) Protein-sourced feedstuffs for aquatic animals in nutrition research and aquaculture. Adv Exp Med Biol 1354:237–261

    Google Scholar 

  • Johnson GA, Frank JW, Li XL, Bayless KJ, Burghardt RC, Bazer FW, Wu G (2011) Osteopontin expressed at the uterine-placental interface increases ion transport across the pig placenta. Placenta 32:A53

    Google Scholar 

  • Jones MK, Tomikawa M, Mohajer B, Tarnawski AS (1999) Gastrointestinal mucosal regeneration: role of growth factors. Front Biosci 4:D303–D309

    Article  PubMed  CAS  Google Scholar 

  • Khanal RC, Nemere I (2008) Regulation of intestinal calcium transport. Annu Rev Nutr 28:179–196

    Article  PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Li P, Mai KS, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53

    Article  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Li W, Sun KJ, Ji Y, Wu ZL, Wang W, Dai Z, Wu G (2016) Glycine regulates expression and distribution of claudin-7 and ZO-3 proteins in porcine intestinal epithelial cells. J Nutr 146:964–969

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Zheng SX, Wu G (2020a) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Han T, Song F, Wu G (2020b) Effects of dietary protein intake on the oxidation of glutamate, glutamine, glucose and palmitate in tissues of largemouth bass (Micropterus salmoides) Amino Acids 52:1491–1503

    Google Scholar 

  • Li XY, Zheng SX, Wu G (2021a) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    Article  PubMed  Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2021b) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–198

    Article  PubMed  Google Scholar 

  • Li XY, Zheng SX, Ma XK, Cheng KM, Wu G (2021c) Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part I: effects of poultry by-product meal and soybean meal on growth, feed utilization, and health. Amino Acids 53:33–47

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Zheng SX, Cheng KM, Ma XK, Wu G (2021d) Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part II: effects of supplementation with methionine or taurine on growth, feed utilization, and health. Amino Acids 53:49–62

    Article  PubMed  CAS  Google Scholar 

  • Li P, He WL, Wu G (2021e) Composition of amino acids in foodstuffs for humans and animals. Adv Exp Med Biol 1332:189–209

    Article  PubMed  Google Scholar 

  • Lien KA, Sauer WC, Fenton M (1997) Mucin output in ileal digesta of pigs fed a protein-free diet. Z. Ernährungswiss 36:182–190

    Article  PubMed  CAS  Google Scholar 

  • Lussier C, Sodek J, Beaulieu JF (2001) Expression of SPARC/osteonectin/BM4O in the human gut: predominance in the stroma of the remodeling distal intestine. J Cell Biochem 81:463–476

    Article  PubMed  CAS  Google Scholar 

  • Madara JL (1991) Functional morphology of epithelium of the small intestine. In: Physiological A (ed) Handbook of Physiology: The Gastrointestinal System (Shultz SG. Society, Bethesda, pp 83–120

    Google Scholar 

  • McGuckin MA, Lindén SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278

    Article  PubMed  CAS  Google Scholar 

  • McLean JA, Karadas F, Surai PF, McDevitt RM, Speake BK (2005) Lipid-soluble and water-soluble antioxidant activities of the avian intestinal mucosa at different sites along the intestinal tract. Comp Biochem Physiol B 141:366–372

    Article  PubMed  Google Scholar 

  • McNabb PC, Tomasi TB (1981) Host defense mechanisms at mucosal surfaces. Annu Rev Microbiol 35:477–496

    Article  PubMed  CAS  Google Scholar 

  • Moughan PJ (2003) Amino acid availability—aspects of chemical analysis and bioassay methodology. Nutr Res Rev 16:127–141

    Article  PubMed  CAS  Google Scholar 

  • Muniz LR, Knosp C, Yeretssian G (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberbauer AM, Larsen JA (2021) Amino acids in dog nutrition and health. Adv Exp Med Biol 1285:199–216

    Article  PubMed  Google Scholar 

  • Opleta-Madsen K, Hardin J, Gall DG (1991) Epidermal growth factor upregulates intestinal electrolyte and nutrient transport. Am J Physiol 260:G807-814

    PubMed  CAS  Google Scholar 

  • Paudel S, Wu G, Wang XQ (2021) Amino acids in cell signaling: regulation and function. Adv Exp Med Biol 1332:17–33

    Article  PubMed  Google Scholar 

  • Pu S, Jain MR, Horvath TL, Diano S, Kalra PS, Kalra SP (1999) Interactions between neuropeptide Y and γ-aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis. Endocrinology 140:933–940

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Bin P, Yin YL, Wu G (2020) Impacts of amino acids on the intestinal defensive system. Adv Exp Med Biol 1265:133–151

    Article  PubMed  CAS  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Sah N, Wu G, Bazer FW (2021) Regulation of gene expression by amino acids in animal cells. Adv Exp Med Biol 1332:1–15

    Article  PubMed  Google Scholar 

  • Sartin JL, Whitlock BK, Daniel JA (2011) Triennial Growth Symposium: neural regulation of feed intake: modification by hormones, fasting, and disease. J Anim Sci 89:1991–2003

    Article  PubMed  CAS  Google Scholar 

  • Satchithanandam S, Vargofcak-Apker M, Valvert RJ, Leeds AR, Sassidy MM (1990) Alteration of gastrointestinal mucin by fiber feeding in rats. J Nutr 120:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Shen JZ, Wu G, Guo SD (2021) Amino acids in autophagy: Regulation and function. Adv Exp Med Biol 1332:51–66

    Article  PubMed  Google Scholar 

  • Song BM, Avery L (2012) Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans. J Neurosci 32:1920–1931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang T, Zhong L, Yu D, Li P, Hu Y (2021) Evaluation of dried porcine solubles in diets of rice field eel (Monopterus albus). Aquaculture 531:735897

    Google Scholar 

  • Thacker PA (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechnol 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Zeng XF, Mao XB, Wu G, Qiao SY (2010) Optimal dietary true ileal digestible threonine for supporting mucosal barrier in the small intestine of weanling pigs. J Nutr 140:981–986

    Article  PubMed  CAS  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL, Lin G, Jia SC, Hu SD, Dahanayaka S, Wu G (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson AD, Meeker DL (2021) How agricultural rendering supports sustainability and assists livestock’s ability to contribute more than just food. Anim Front 11:24–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2020a) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2020b) Metabolism and functions of amino acids in sense organs. Adv Exp Med Biol 1265:201–217

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition, 2nd ed. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Wu G (2022) Nutrition and metabolism: Foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1–24

    Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou YQ (2018) Arginine nutrition and metabolism in growing, gestating and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu ZL, Hou YQ, Dai ZL, Hu CA, Wu G (2019) Metabolism, nutrition and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM (2021) Role of L-arginine in nitric oxide synthesis and health in humans. Adv Exp Med Biol 1332:167–188

    Article  PubMed  Google Scholar 

  • Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR (2019) Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocrine Rev 40:1092–1107

    Article  Google Scholar 

  • Yang YK, Chen M, Georgeson KE, Harmon CM (2007) Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight reduction. Am J Physiol 292:R235–R241

    CAS  Google Scholar 

  • Yang Y, He Y, Jin Y, Wu G, Wu ZL (2021) Amino acids in endoplasmic reticulum stress and redox signaling. Adv Exp Med Biol 1332:35–49

    Article  PubMed  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021a) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Article  PubMed  Google Scholar 

  • Zhang Y, Mu T, Jia H et al. (2021b) Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids. https://doi.org/10.1007/s00726-021-03011-w

Download references

Acknowledgements

This work was supported by Texas A&M AgriLife Research (H-8200). We thank research associates and students in our laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, P., Wu, G. (2022). Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health. In: Wu, G. (eds) Recent Advances in Animal Nutrition and Metabolism. Advances in Experimental Medicine and Biology, vol 1354. Springer, Cham. https://doi.org/10.1007/978-3-030-85686-1_13

Download citation

Publish with us

Policies and ethics