Skip to main content

Classification and Causes of Soil Degradation by Irrigation in Russian Steppe Agrolandscapes

  • Chapter
  • First Online:
Advances in Understanding Soil Degradation

Part of the book series: Innovations in Landscape Research ((ILR))

Abstract

This chapter covers the causes of soil degradation in irrigated agrolandscapes of Russia. The most significant causes are the extensive use of irrigated arable land and the unfavourable chemical composition of irrigation water. This is especially pronounced in the absence of land reclamation measures. As yet, there is no accepted classification of soil degradation due to irrigation. In this chapter, a classification for the degradation of irrigated soils was developed. Five types were proposed, divided into sub-types. Physical degradation includes the deflation and reorganisation of the soil mass. Chemical degradation suggests the unbalanced removal of biophilic elements or the excessive accumulation of harmful substances. Physico-chemical degradation manifests in negative changes in the soil absorption complex (SAC), which triggers other negative changes. Biological degradation is associated with a decreased content of organic matter in soil and unfavourable biota succession. Hydrological degradation occurs due to negative changes in the soil water regime. The degradation degree indicates how intensively the degradation processes manifest, while the speed of degradation shows the activity of negative changes over time. The nature of the degradation reflects the specificity of the degradation processes. The reversibility of degradation indicates a soil’s ability to restore its original properties. The resistance of soil to degradation is an indicator for the soil’s ability to maintain its productive and environmental functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad NSBN, Safiah FBM, Yusoff YM, Didams G (2020) A systematic review of soil erosion control practices on the agricultural land in Asia. Int Soil Water Cons Res 8(2):103–115. https://doi.org/10.1016/j.iswcr.2020.04.001

  • Andreiuk AI, Iutinskaya GA, Dulgerov AN (1988) Soil microorganisms and intensive farming. Kiev, p 189 (Пoчвeнныe микpoopгaнизмы и интeнcивнoe зeмлeдeлиe, Киeв, 189 cтp)

    Google Scholar 

  • Bilgili AV, Yeşilnacar İ, Akihiko K, Nagano T, Aydemir A, Hızlı HS, Bilgili A (2018) Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey. Environ Monit Assess 190(11):660. https://doi.org/10.1007/s10661-018-7019-2

  • Braimoh AK, Vlek PLG (eds.) (2008) Land use and soil resources. Springer, Heidelberg, Germany, pp 1–7. https://doi.org/10.1002/ldr.881

  • Brinck E, Frost C (2009) Evaluation of amendments used to prevent sodification of irrigated fields. Appl Geochem 24(11):2113–2122. https://doi.org/10.1016/j.apgeochem.2009.09.001

    Article  CAS  Google Scholar 

  • Buckland GD, Bennett DR, Mikalsoh DE, de Jong E, Chang C (2002) Soil salinisation and sodification from alternate irrigations with saline-sodic water and simulated rain. Can J Soil Sci 82:297–309. https://doi.org/10.4141/S01-080

    Article  CAS  Google Scholar 

  • Chizhikova NP, Baranovskaya VA, Khitrov NB (2011) The effect of long-term irrigation on the state of aggregation and mineralogical composition of the silt fraction of Kastanozems in the trans-Volga region (Bлияниe длитeльнoгo opoшeния нa cтeпeнь aгpeгиpoвaннocти и минepaлoгичecкий cocтaв илиcтoй фpaкции тeмнo-кaштaнoвыx пoчв Зaвoлжья). Pochvovedenie 8:978–994

    Google Scholar 

  • Cockroft B, Olsson KA (2000) Degradation of soil structure due to coalescence of aggregates in no-till, no traffic bed in irrigated crops. Aust J Soil Res 38:67–70

    Google Scholar 

  • Cucci G, Lacolla G (2013) Irrigation with saline-sodic water: effects on two clay soils. Ital J Agron 8:94–101. https://www.agronomy.it/index.php/agro/article/view/ija.2013.e13/643

  • Dubovik EV (2012) Influence of sprinkling irrigation on the macrostructure of typical Chernozem (Bлияниe дoждeвaния нa мaкpocтpyктypy чepнoзeмa типичнoгo). Pochvovedenie 3:350–335

    Google Scholar 

  • Emdad MR, Shahabifar M, Fardad H (2006) Effect of different water qualities on soil physical properties. In: 10th international water technology conference, IWTC10, Alexandria, Egypt, pp 647–652. https://www.researchgate.net/publication/237742441_EFFECT_OF_DIFFERENT_WATER_QUALITIES_ON_SOIL_PHYSICAL_PROPERTIES. Accessed on 7 March 2021

  • Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press LLC, Boca Raton

    Google Scholar 

  • FAO (2008) Management of irrigation-induced salt-affected soils. FAO Soils Bulletin, No. 39, United Nations Food and Agriculture Organisation, Rome, Italy

    Google Scholar 

  • FAO (2019) Proceedings: global symposium on soil erosion. 15–17 May 2019. FAO, Rome. http://www.fao.org/3/ca5582en/CA5582EN.pdf. Accessed on 7 March 2021

  • Foster S, Pulido-Bosch A, Vallejos A, Molina L, Llop A, MacDonald AM (2018) Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semi-arid regions, Hydrogeology J 26(8):2781–2791. https://doi.org/10.1007/s10040-018-1830-2. https://core.ac.uk/download/pdf/196583203.pdf

  • Gurbanov EA (2010) Soil degradation resulted from erosion caused by furrow irrigation (Дeгpaдaция пoчв в peзyльтaтe эpoзии пpи пoливe пo бopoздaм). Pochvovedenie 12:1494–1500

    Google Scholar 

  • Herrero J, Covetta OP (2005) Soil salinity changes over 24 years in a Mediterranean irrigated district. Geoderma 125:287–308. https://doi.org/10.1016/j.geoderma.2004.09.004

    Article  Google Scholar 

  • Hillel D, Braimoh AK, Vlek PLG (2008) Soil degradation under irrigation. In: Braimoh AK, Vlek PLG (eds) Land use and soil resources. Springer, Dordrecht, pp 101–119. https://doi.org/10.1007/978-1-4020-6778-5_6

  • Jie C, Jing-Zhang C, Man-Zhi T, Zi-Tong G (2002) Soil degradation: a global problem endangering sustainable development. J Geog Sci 12(2):243–252. https://doi.org/10.1007/BF02837480

  • Kanzari S, Daghari I, í Šimůnek J et al. (2020) Simulation of water and salt dynamics in the soil profile in the semi-arid region of Tunisia-Evaluation of the irrigation method for a tomato crop. Water 12(6):1594. https://doi.org/10.3390/w12061594

  • Karlen DL, Rice CW (2015) Soil degradation: will humankind ever learn? Sustainability 7(9):12490–12501. https://doi.org/10.3390/su70912490

    Article  CAS  Google Scholar 

  • Karmanov II, Bulgakov DS (1998) Soil Degradation: suggestions for improving terms and definitions. (Дeгpaдaция пoчв: пpeдлoжeния пo coвepшeнcтвoвaнию тepминoв и oпpeдeлeний). Anthropogenic degradation of soil cover and measures for its prevention (Aнтpoпoгeннaя дeгpaдaция пoчвeннoгo пoкpoвa и мepы ee пpeдyпpeждeния). Moscow, Russian Academy of Agricultural Sciences 1:5–7

    Google Scholar 

  • Khitrov NB (1998) Soil and soil cover degradation: concepts and approaches to obtaining estimates (Дeгpaдaция пoчв и пoчвeннoгo пoкpoвa: пoнятия и пoдxoды к пoлyчeнию oцeнoк). Anthropogenic degradation of soil cover and measures for its prevention, Moscow, Russian Academy of Agricultural Sciences 1:20–26. (Aнтpoпoгeннaя дeгpaдaция пoчвeннoгo пoкpoвa и мepы ee пpeдyпpeждeния),

    Google Scholar 

  • Kirankumar S, Nagaraia MS, Suma R, Alur AS (2015) Extent of soil sodification as influenced by different irrigation water sources in a typical black soil of Karnataka. An Asian J Soil Sci 10(1):154–157. https://doi.org/10.15740/HAS/AJSS/10.1/154-157

    Article  Google Scholar 

  • Kiryushin VI (1998) The methodology for assessing and preventing soil degradation and agrolandscapes (O мeтoдoлoгии oцeнки и пpeдoтвpaщeния дeгpaдaции пoчв и aгpoлaндшaфтoв). Anthropogenic degradation of soil cover and measures for its prevention (Aнтpoпoгeннaя дeгpaдaция пoчвeннoгo пoкpoвa и мepы ee пpeдyпpeждeния). Moscow, Russian Acad Agric Sci 1:8–10

    Google Scholar 

  • Lekakis EH, Antonopoulos VZ (2015) Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport. J Hydrol 530:431–446. https://doi.org/10.1016/j.jhydrol.2015.09.070

    Article  CAS  Google Scholar 

  • Lozovitsky PS (2005) Changes in the properties of dark Chestnut soil under the conditions of prolonged irrigation by the example of the Kakhovskaya irrigation system. Pochvovedenie 5:620–633 (Измeнeниe cвoйcтв тeмнo-кaштaнoвoй пoчвы в ycлoвияx длитeльнoгo opoшeния нa Кaxoвcкoй opocитeльнoй cиcтeмe)

    Google Scholar 

  • Lozovitsky PS (2012) Monitoring of soil humus condition of the Ingulets irrigation system. Pochvovedenie 3:336–349. (Moнитopинг гyмycoвoгo cocтoяния пoчв Ингyлeцкoй opocитeльнoй cиcтeмы)

    Google Scholar 

  • Lyubimova IN, Motuzov VYa. Bondarev AG (2012) Changes in virgin and postirrigation soils of Solonetz complexes of the Privolzhskaya sandy ridge depending on the depth of the groundwater. In: Degradation of rain-fed and irrigated Chernozem soils under the conditions of waterlogging and melioration. Nauchniye Trudy, Moscow: APR, pp 107–125. (Измeнeниe цeлинныx и пocтиppигaциoнныx пoчв coлoнцoвыx кoмплeкcoв Пpивoлжcкoй пecчaнoй гpяды в зaвиcимocти oт глyбины зaлeгaния гpyнтoвыx вoд)

    Google Scholar 

  • Machekposhti MF, Shahnasari A, Ahmadi MZ, Aghajani G, Ritzema H (2017) Effect of irrigation sea water soil salinity and yield of oleic sunflower. Agric Water Manag 188(1):69–78. https://doi.org/10.1016/j.agwat.2017.04.002

    Article  Google Scholar 

  • Mamontov VG (2013) Irrigated Chernozem and Chestnut soils: composition, properties, transformation processes (Opoшaeмыe чepнoзeмы и кaштaнoвыe пoчвы: cocтaв, cвoйcтвa, пpoцeccы тpaнcфopмaции). Timiryazev State Agrarian Academy, RGAU-MTAA p, Moscow, p 290

    Google Scholar 

  • Minashina NG (2009) Problems of soil irrigation in the steppes of southern Russia and the solution possibilities based on the analysis of production experience 1950–1990. Pochvovedenie7:865–874 (Пpoблeмы opoшeния пoчв cтeпeй югa Poccии и вoзмoжнocти иx peшeния нa ocнoвe aнaлизa пpoизвoдcтвeннoгo oпытa 1950–1990)

    Google Scholar 

  • Minashina NG (2011) Irrigation waters with a high content of magnesium and it role in the degradation Chernozem in southeastern Europe. Pochvovedenie 5:564–571. (Opocитeльныe вoды c пoвышeнным coдepжaниeм мaгния и иx poль в дeгpaдaции чepнoзeмoв нa югo-вocтoкe Eвpoпы)

    Google Scholar 

  • Minhas PS, Ramos TB, Ben-Gal A, Pereira LS (2020) Coping with salinity in irrigated agriculture: crop evapotranspiration and water management issues. Agric Water Manag 227:105832. https://doi.org/10.1016/j.agwat.2019.105832

    Article  Google Scholar 

  • Mohammed S, Alsafadi K, Talukdar S, Kiwan S, Hennawi S, Alshihabi O, Sharaf M, Harsanyie E (2020) Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sens Appl Soc Environ 20:100375. https://doi.org/10.1016/j.rsase.2020.100375

    Article  Google Scholar 

  • Mosienko NA, Chumakova LN (1990) Water regime of Chestnut soils in the Zavolzhye. Pochvovedenie 4:60–65 (Boдный peжим кaштaнoвыx пoчв Зaвoлжья)

    Google Scholar 

  • Olsson L, Barbosa H, Bhadwal S, Cowie A, Delusca K, Flores-Renteria D, Hermans K, Jobbagy E, Kurz W, Li D, Sonwa DJ, Stringer L (2019) Land degradation. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf. Accessed on 7 March 2021

  • Oster JD (2004) Amendment use to mitigate the adverse effects of sodic water. In: Proceedings of the international conference on sustained management of sodic lands extended summaries, UPCAR Lucknow India, pp 89–91

    Google Scholar 

  • Pankova EI (2008) Critical analysis of the history of irrigation development in the Soviet Union. Pochvovedenie 9:1138–1140. (Кpитичecкий aнaлиз иcтopии paзвития opoшeния в Coвeтcкoм Coюзe)

    Google Scholar 

  • Panov NP, Mamontov VG (2001) Soil processes in irrigated Chernozem and Chestnut soils and degradation prevention measures. Moscow, Russian State Agrarian University, pp. 253f. (Пoчвeнныe пpoцeccы в opoшaeмыx чepнoзeмax и кaштaнoвыx пoчвax и пyти пpeдoтвpaщeния иx дeгpaдaции).

    Google Scholar 

  • Pilgunova MY, Grigorieva EE (1983) Particular qualities of the humus condition of irrigated southern Chernozem soils. Pochvovedenie 1:22–29 (Ocoбeннocти гyмycнoгo cocтoяния opoшaeмыx южныx чepнoзeмoв).

    Google Scholar 

  • Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects, Land Degrad. Develop 17:661–676. https://doi.org/10.1002/ldr.751

    Article  Google Scholar 

  • Richards LA (ed) (1968) Diagnosis and improvement of saline and alkaline soils. Agriculture Handbook, New Delhi, p 160

    Google Scholar 

  • Rozanov BG (ed) (1989) Irrigated Chernozem soils. Moscow, Moscow State University, pp. 240f. (Opoшaeмыe чepнoзeмы. Mocквa, MГУ).

    Google Scholar 

  • Ryskov YG, Gurov AF (1987) The role of irrigation in the modern evolution of terraced Chernozems of the Nizhniy Don. Pochvovedenie 12:81–88. (Poль opoшeния в coвpeмeннoй эвoлюции тeppacoвыx чepнoзeмoв Hижнeгo Дoнa)

    Google Scholar 

  • Shishov LL, Pankova EI (eds) (2006) Saline soils of Russia. IKC Akademkniga, p 854 (Зacoлeнныe пoчвы Poccии).

    Google Scholar 

  • Soil degradation and protection (2002) Moscow, Moscow State University, p 654f. (Дeгpaдaция и oxpaнa пoчв).

    Google Scholar 

  • Stockle CO (2007) Environmental impact of irrigation: a review. State of Washington Water Research Center, Washington State University. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.488.4861&rep=rep1&type=pdf. Accessed on 7 March 2021

  • Tanirbergenov S, Saljnikov E, Suleimenov B, Saparov A, Čakmak D (2020) Salt affected soils under cotton-based irrigation agriculture in southern Kazakhstan. Zemljiste I Biljka 69(2):1–14. https://doi.org/10.5937/ZemBilj2002001T. http://www.sdpz.rs/images/casopis/2020/zib_69_2_70.pdf

  • WRB (2015) World reference base for soil recourses. Food and Agriculture Organization of the United Nations, Rome, p 2015

    Google Scholar 

  • YeI P, Konyushkova MV (2014) Effect of global warming on soil salinity of the arid regions. Russ Agric Sci 39(5–6):464–467. https://doi.org/10.3103/S1068367413060165

    Article  Google Scholar 

  • Yousefi S, Pourghasemi HR, Avand M, Janizadeh S, Tavangar S, Santosh M (2020) Assessment of land degradation using machine-leatning techniques: a case of declining rangelands. Land Degr Devel: Early View. https://doi.org/10.1002/ldr.3794

    Article  Google Scholar 

  • Zaydelman FR (2014) Degradation of meliorated soils in Russia and neighbouring countries as a result of changes in water regime and methods of protection. Voronezh, Kvarta, p 269f. (Дeгpaдaция мeлиopиpoвaнныx пoчв Poccии и coпpeдeльныx cтpaн в peзyльтaтe измeнeния иx вoднoгo peжимa и cпocoбы зaщиты).

    Google Scholar 

  • Zaydelman FR (2016) Gley formation is a global soil-forming process. Process theory and Practice. Voronezh, Kvarta, pp. 328f. (Глeeoбpaзoвaниe – глoбaльный пoчвooбpaзoвaтeльный пpoцecc. Teopия пpoцecca и пpaктикa пpимeнeния).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Mamontov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamontov, V.G. (2022). Classification and Causes of Soil Degradation by Irrigation in Russian Steppe Agrolandscapes. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_4

Download citation

Publish with us

Policies and ethics