Skip to main content

Labile Soil Carbon as an Indicator of Soil Organic Matter Quality in the Province of Vojvodina, Serbia

  • Chapter
  • First Online:
Advances in Understanding Soil Degradation

Part of the book series: Innovations in Landscape Research ((ILR))

Abstract

Labile carbon fractions such as particulate organic carbon (POC) and hot-water-extractable organic carbon (HWOC) are pools of soil carbon that undergo significant transformation and could therefore serve as an indicator of changes in the quality and quantity of soil organic carbon (SOC). They represent 1–5% of the total organic matter and comprise a heterogeneous mixture of materials. The aim of this study was to assess the labile carbon pool change in relation to soil type and management. The procedure involves labile carbon extraction by separation in water or liquids with adjusted density following the aspiration of organic matter from the surface of an aqueous suspension. Our data demonstrated that the land use systems had a predominant effect on the organic matter stabilisation. This study showed that non-arable land use systems were higher in labile carbon, mostly due to lower microbiological activity. In arable soils, management practices have a significant influence on both labile fractions. Preserving the soil organic carbon would require the retention of crop residue in combination with judicious fertilisation. Our result could contribute to a better understanding of SOC fractions’ relevance in the Province of Vojvodina related to the cropping management, and could help select cropping practices for better SOC preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balaria A, Johnson CE, Xu Z (2009) Molecular‐scale characterization of hot‐water‐extractable organic matter in organic horizons of a forest soil. Soil Sci Soc Am J 73(3):812–821

    Article  CAS  Google Scholar 

  • Bajgai Y, Kristiansen P, Hulugalle N, McHenry M (2012) Particulate and mineral-associated organic carbon fractions as influenced by corn residue incorporation and simulated tillage. In: Proceedings of 16th Australian agronomy conference. (http://regional.org.au/au/asa/2012/climatechange/8063_bajgaiy.htm. Accessed 25 June 2019

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp B25-B240

    Google Scholar 

  • Bayer C, Matin-Neto L, Mielniczuk J, Pavinato A (2004) Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto. Pesq Agropec Bras 39:677–683. https://doi.org/10.1590/S0100-204X2004000700009

    Article  Google Scholar 

  • Belić M, Nesić Lj, Ćirić V, Vasin J, Milošev D, Šeremešić S (2011) Characteristics and classification of gleyic soils of Banat. Field Veg Crop Res 48:375–382

    Google Scholar 

  • Blair N, Faulkner RD, Till AR, Körschens M, Schulz E (2006) Long-term management impacts on soil C, N and physical fertility. Part II. Bad Lauchstadt static and extreme FYM experiments. Soil till Res 91:39–47. https://doi.org/10.1016/j.still.2005.11.001

    Article  Google Scholar 

  • Blum WEH (2008) Characterization of soil degradation risk: an overview. In: Tóth G, Montanarella L, Rusco E (eds) Threats to soil quality in Europe. JRC, Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Bogdanović D, Ubavić M, Dozet D (1993) Hemijska svojstva i obezbeđenost zemljišta Vojvodine neophodnim mikroelementima. In „Teški metali i pesticidi u zemljištima Vojvodine“ Kastori R (eds) Poljoprivredni fakultet, Institut za ratarstvo i povrarstvo, Novi sad, pp 197–215

    Google Scholar 

  • Bogdanović M (1954) Odlike humusa u glavnim tipovima zemljišta NR Srbije. Faculty of Agriculture, Zemun, Belgrade. Doctoral dissertation

    Google Scholar 

  • Böhme L, Böhme F (2006) Soil microbiological and biochemical properties affected by plant growth and different long-term fertilization. Eur J Soil Biol 42:1–12. https://doi.org/10.1016/j.ejsobi.2005.08.001

    Article  CAS  Google Scholar 

  • Bouajila A, Gallali T (2008) Soil organic carbon fractions and aggregate stability in carbonated and no carbonated soil in Tunisia. J Agron 7:127–137. https://doi.org/10.3923/ja.2008.127.137

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Methods for physical separation and characterization of soil organic matter fractions. Geoderma 56:449–457. https://doi.org/10.1016/B978-0-444-81490-6.50036-4

    Article  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380. https://doi.org/10.1016/S0016-7061(02)00370-1

    Article  CAS  Google Scholar 

  • Chen HQ, Marhan S, Billen N, Stahr K (2009) Soil organic carbon and total nitrogen stocks as affected by different land uses in Baden-Wurttemberg, Southwest Germany. J Plant Nutr Soil Sci 172:32–42. https://doi.org/10.1002/jpln.200700116

    Article  CAS  Google Scholar 

  • Christensen BT, Johnson AE (1997) Soil organic matter and soil quality—lessons learn from the long-term experiments at Askov and Rothamsted. In: Gregorich EG, Carter MR (eds) Soil quality in crop production and ecosystem health. Elsevier, Amsterdam, pp 399–430

    Chapter  Google Scholar 

  • Ćirić V (2014) Qualitative and quantitative characteristics of organic matter in different soil types [dissertation]. University of Novi Sad, Novi Sad

    Google Scholar 

  • Ćirić V, Belić M, Nešić Lj, Šeremešić S, Pejić B, Bezdan A, Manojlović M (2016) The sensitivity of water extractable soil organic carbon fractions to land use in three soil types. Arch Agron Soil Sci 62(12):1654–1664. https://doi.org/10.1080/03650340.2016.1165345

    Article  CAS  Google Scholar 

  • Ćirić V, Manojlović M, Nešić Lj, Belić M (2013a) Soil organic carbon loss following land use change in a semiarid environment. Bulg J Agri Sci 19:461–466

    Google Scholar 

  • Ćirić V, Manojlović M, Belić M, Nešić Lj, Šeremešić S (2013b) Effects of land use conversion on soil aggregate stability and organic carbon in different soils. Agrociencia 47(6):539–552

    Google Scholar 

  • Ćirić V, Drešković N, Mihailović DT, Mimić G, Arsenić I, Đurđević V (2017) Which is the response of soils in the Vojvodina Region (Serbia) to climate change using regional climate simulations under the SRES-A1B? CATENA 158:171–183. https://doi.org/10.1016/j.catena.2017.06.024

    Article  Google Scholar 

  • Compton JE, Boone RD (2002) Soil nitrogen transformation and the role of light fraction organic matter in forest soil. Soil Biol Biochem 34:933–943

    Article  CAS  Google Scholar 

  • Cookson WR, Murphy DV, Roper MM (2008) Characterizing the relationships between soil organic matte components and microbial function and composition along a tillage disturbance gradient. Soil Biol Biochem 40:763–777. https://doi.org/10.1016/j.soilbio.2007.10.011

    Article  CAS  Google Scholar 

  • Curry JP (1998) Factors affecting earthworm abundance in Soils. In: Edwards CA (ed) Earthworm ecology. St. Lucie Press, Boca Raton, FL, pp 37–64

    Google Scholar 

  • Dalal RC, Mayer RJ (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland: III Distribution and kinetics of soil organic carbon in particle-size fractions. Aust J Soil Res 24:281–292. https://doi.org/10.1071/SR9860301

    Article  CAS  Google Scholar 

  • de Figueiredo CC, Resck DVS, Carneiro MAC (2010) Labile and stable fractions of soil organic matter under management systems and native cerrado. Rev Bras Ciênc Sol 34:907–916. https://doi.org/10.1590/S0100-06832010000300032

  • Fischer T (1993) Einfluß von Winterweizen und Winterroggen in Fruchtfolgen mit unterschiedlichem Getreideanteil auf die mikrobielle Biomasse und jahreszeitliche Kohlenstoffdynamik des Bodens. Arch Acker Pflanzenbau Bodenkd 37:181–189

    CAS  Google Scholar 

  • Frank S, Schmid E, Havlík P, Schneider UA, Böttcher H, Balkovič J, Obersteiner M (2015) The dynamic soil organic carbon mitigation potential of European cropland. Global Environ Chan 35:269–278. https://doi.org/10.1016/j.gloenvcha.2015.08.004

    Article  Google Scholar 

  • Franzluebbers AJ, Arshad MA (1997) Particulate organic carbon content and potential mineralization as affected by tillage and texture. Soil Sci Soc Am J 61:1382–1386. https://doi.org/10.2136/sssaj1997.03615995006100050014x

    Article  CAS  Google Scholar 

  • Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243. https://doi.org/10.1016/S0038-0717(03)00186-X

    Article  CAS  Google Scholar 

  • Ghani A (2002) Hot-water carbon is an integrated indicator of soil quality. Paper presented at: confronting new realities in the 21st century. 17th world conference of soil science, Bangkok, Thailand

    Google Scholar 

  • Gomiero T (2003) Alternative land management strategies and their impact on soil conservation. Agriculture 3(3):464–483. https://doi.org/10.3390/agriculture3030464

    Article  Google Scholar 

  • Gregorich EG, Janzen HH (1996) Storage of soil carbon in the light fraction and macro-organic matter. In: Carter MR, Steward BA (eds) Structure and soil organic matter storage in agricultural soils. CRC Press, Boca Raton, FL, pp 167–190

    Google Scholar 

  • Gregorich EG, Bear M, Stoklas U, St–Georges P (2003) Biodegradability of soluble organic matter in maize cropped soils. Geoderma 113:237–252. https://doi.org/10.1016/S0016-7061(02)00363-4

  • Hamkalo Z, Bedernichek T (2014) Total, cold and hot water extractable organic carbon in soil profile: impact of land-use change. Žemdirbystė 101:125–132. https://doi.org/10.13080/z-a.2014.101.016

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87. https://doi.org/10.1023/A:1004213929699

    Article  CAS  Google Scholar 

  • Haynes RJ (2000) Interactions between soil organic matter status, cropping history, method of quantification and sample pretreatment and their effects on measured aggregate stability. Biol Fert Soils 30:270–275. https://doi.org/10.1007/s003740050002

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268. https://doi.org/10.1016/S0065-2113(04)85005-3

    Article  CAS  Google Scholar 

  • He Y, Xu Z, Chen C, Burton J, Ma Q, Ge Y, Xu J (2008) Using light fraction and macroaggregate associated organic matters as early indicators for management-induced changes in soil chemical and biological properties in adjacent native and plantation forests of subtropical Australia. Geoderma 147(3–4):116–125. https://doi.org/10.1016/j.geoderma.2008.08.002

    Article  CAS  Google Scholar 

  • Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L (1992) Light-fraction organic matter in soils from long-term crop rotation. Soil Sci Soc Am J 56:1799–1806. https://doi.org/10.2136/sssaj1992.03615995005600060025x

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B. Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Google Scholar 

  • Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60. https://doi.org/10.1002/jpln.200700043

    Article  CAS  Google Scholar 

  • Kim YS, Yi MJ, Lee YY, Son Y, Koike T (2012) Characteristics of soil CO2 efflux in even-aged alder compared to Korean pine plantations in Central Korea. J Forest Sci 28:232–241. https://doi.org/10.7747/JFS.2012.28.4.232

  • Kupernikov IA, Boincean BP, Dent D (2011) Ecological principles for sustainable agriculture on chernozem soils. Springer, pp 1–143

    Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17(2):197–209. https://doi.org/10.1002/ldr.696

    Article  Google Scholar 

  • Leifeld J, Kögel-Knabner I (2005) Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155. https://doi.org/10.1016/j.geoderma.2004.04.009

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten HR, Körschens M (1995) Hot water extracted organic matter: chemical composition and temporal variations in a long–term field experiment. Biol Fertil Soil 20:17–23. https://doi.org/10.1007/BF00307836

    Article  CAS  Google Scholar 

  • Liang Q, Chen H, Gong Y, Fan M, Lal R, Kuzyakov Y (2012) Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in wheat–maize system in the North China Plain. Nut Cycl Agroecosys 92:21–33. https://doi.org/10.1007/s10705-011-9469-6

    Article  Google Scholar 

  • Manojlović M, Aćìn V, Seremesic S (2008) Long-term effects of agronomic practices on the soil organic carbon sequestration in Chernozem. Arch Agr Soil Sci 54:353–367. https://doi.org/10.1080/03650340802022845

    Article  CAS  Google Scholar 

  • Manojlović M, Čabilovski R, Sitaula B (2011) Soil organic carbon in Golija mountain (Serbia) soils: effects of land use and altitude. Pol J Environ Stud 20:977–986

    Google Scholar 

  • Marinković J, Bjelić D, Šeremešić S, Tintor B, Ninkov J, Živanov M, Vasin J (2018) Microbial abundance and activity in chernozem under different cropping systems. Field Veg Crop 55(1):6–11

    Google Scholar 

  • Martinez-Mena M, Lopez J, Almagro M, Albaladejo J, Castillo V, Ortiz R, Fayos B (2012) Organic carbon enrichment in sediments: effect of rainfall characteristics under different land uses in a Mediterranean area. CATENA 94:36–42. https://doi.org/10.1016/j.catena.2011.02.005

    Article  CAS  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77(1):25–56. https://doi.org/10.1007/s10533-005-0712-6

    Article  CAS  Google Scholar 

  • Molnar I (2003) Cropping systems in Eastern Europe: past, present and future. J Crop Prod 9:623–647. https://doi.org/10.1300/J144v09n01_11

    Article  Google Scholar 

  • Monreal CM, Janzen HH (1993) Soil organic carbon dynamics after 80 years of cropping a Dark Brown Chernozem. Can J Soil Sci 73:133–146. https://doi.org/10.4141/cjss93-014

    Article  Google Scholar 

  • Nejgebauer V (1951) Vojvođanski černozem njegova veza sa černozemom istočne i jugoistočne Evrope i pravac njegove degradacije. Matica srpska J Nat Sci 1

    Google Scholar 

  • Nešić L, Pucarević M, Sekulić P, Belić M, Vasin J, Ćirić V (2008) Osnovna hemijska svojstva u zemljištima Srema. Zbornik radova Instituta za ratarstvo i povrtarstvo. Novi Sad 45:247–255

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic levels of grasslands in the Great Plains. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Paul EA, Kravchenko A, Grandy AS, Morris S (2015) The ecology of agricultural landscapes: long-term research on the path to sustainability. Soil organic matter dynamics: Controls and management for sustainable ecosystem functioning. Oxford University Press, New York, pp 104–134

    Google Scholar 

  • Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C (2014) Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil till Res 139:19–22. https://doi.org/10.1016/j.still.2014.01.006

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil till Res 43:131–167. https://doi.org/10.1016/S0167-1987(97)00038-X

    Article  Google Scholar 

  • Schimel JP, Schaeffer SM (2015) Microbial control over carbon cycling in soil. In: Nemergut DR, Shade A, Violle C (eds) The causes and consequences of microbial community structure. Frontiers in microbiology, pp 155–166

    Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Nannipieri P (2011) Persistence of soil organic matter as an ecosystem property. Nature 4787367:49. http://doi.org/https://doi.org/10.1038/nature10386

  • Sekulić P, Ubavić M, Dozet D (1998) Effects of fertilizer application on chemical soil properties. In: Proceedings of 2nd Balkan symposium on field crops, Novi Sad, pp 303–309

    Google Scholar 

  • Sekulić P, Gavrić M, Hansman Š (2000) Informacioni Sistem o Zemljištu. Ratar Povrt 33:5–12

    Google Scholar 

  • Sekulić P, Hadžić V, Ubavić M, Maksimović L, Nešić L (2006) Karakterizacija i uređenje zemljišta za proizvodnju visoko vredne hrane od pšenice, kukuruza, soje, suncokreta, povrća i krompira. Ratar Povrt 42(2):133–148

    Google Scholar 

  • Sekulić P, Kurjački I, Vasin J, Šeremešić S (2007) Plodnost poljoprivrednih površina na privatnom sektoru u Vojvodini. Ekon Poljop 54(1):73–84

    Google Scholar 

  • Sekulić P, Ninkov J, Hristov N, Vasin J, Šeremešić S, Zeremski-Škorić T (2010) Sadržaj organske materije u zemljištima AP Vojvodine i mogućnost korišćenja žetvenih ostataka kao obnovljivog izvora energije. Ratar Povrt 47:591–598

    Google Scholar 

  • Sekulić P, Ninkov J, Zeremski-Škorić T, Vasin J, Milić S (2011) Monitoring kvaliteta zemljišta AP Vojvodine. In: Proceedings of 1st symposium “Zemljište korišćenje i zaštita”, Novi Sad, pp 70–76

    Google Scholar 

  • Šeremešić S, Milosev D, Djalovic I, Zeremski T, Ninkov J (2011) Management of soil organic carbon in maintaining soil productivity and yield stability of winter wheat. Plant Soil Environ 57:216–221

    Article  Google Scholar 

  • Seremesic S, Milosev D, Sekulic P, Nesic L, Ciric V (2013) Total and hot-water extractable carbon relationship in Chernozem soil under different cropping systems and land use. J Cent Europ Agri 14(4):1479–1487. https://doi.org/10.5513/jcea.v14i4.2346

    Article  Google Scholar 

  • Šeremešić S, Ćirić V, Milošev D, Vasin J, Djalovic I (2017) Changes in soil carbon stock under the wheat-based cropping systems at Vojvodina province of Serbia. Arch Agron Soil Sci 63:388–402. https://doi.org/10.1080/03650340.2016.1218475

    Article  Google Scholar 

  • Šeremešić S, Ćirić V, Djalović I, Vasin J, Zeremski T, Siddique KHM, Farooq M (2020) Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Arch Agron Soil Sci 66(14):2055–2066. https://doi.org/10.1080/03650340.2019.1711065

    Article  CAS  Google Scholar 

  • Šimon T (2008) The influence of long-term organic and mineral fertilization on soil organic matter. Soil Water Res 3:41–51

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241(2):155–176. https://doi.org/10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Soon YK, Arshad MA, Haq A, Lupway N (2007) The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil. Soil till Res 85:38–46. https://doi.org/10.1016/j.still.2006.10.009

    Article  Google Scholar 

  • Sparling G, Vojvodić-Vuković M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem 30:1469–1472

    Article  CAS  Google Scholar 

  • Stamenov D, Đurić S, Hajnal JT, Šeremešić S (2016) Fertilization and crop rotation effects on the number of different groups of microorganisms. Ratar Povrt 53(3):96–100

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley

    Google Scholar 

  • Tobiašova E, Debska B, Banach-Szott M (2013) Stability of organic matter of Haplic Chernozem and Haplic Luvisol of different ecosystems. J Cent Eur Agric 14:1558–1566. https://doi.org/10.5513/JCEA01/14.4.1393

    Article  Google Scholar 

  • Van Wesemael B, Paustian K, Meersmans J, Goidts E, Barancikova G, Easter M (2010) Agricultural management explains historic changes in regional soil carbon stocks. PNAS 107:14926–14930. https://doi.org/10.1073/pnas.1002592107

    Article  Google Scholar 

  • Vasin J, Sekulić P (2005) Plodnost Zemljišta u Vojvodini. Ekon Poljopr 52(4):495–502

    Google Scholar 

  • Vidojević D (ed) (2018) Report on soil state in the Republic of Serbia 2016–2017. Environmental Protection Agency, Ministry of Environmental Protection, pp 1–51

    Google Scholar 

  • Vidojević D, Manojlović M (2010) Procena sadržaja organske materije u zemljištima Srbije. Zbornik Naučnih Radova Instituta PKB Agroekonomik 16(1–2):231–244

    Google Scholar 

  • Vučić N (1987) Vodni, vazdušni i toplotni režim zemljišta. Vojvođanska akademija nauka i umetnosti, Novi Sad, pp 1–324

    Google Scholar 

  • Živković B, Nejgebauer V, Tanasijević Đ, Miljković N, Stojković L, Drezgić P (1972) Soils of Vojvodina. Institute for Field and Vegetable Crops Novi Sad, Novi Sad.

    Google Scholar 

  • WRB – IUSS Working Group (2006) World reference base for soil resources (2006) World soil resources reports 103. FAO, Rome

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srđan Šeremešić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Šeremešić, S., Ćirić, V. (2022). Labile Soil Carbon as an Indicator of Soil Organic Matter Quality in the Province of Vojvodina, Serbia. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_30

Download citation

Publish with us

Policies and ethics