Skip to main content

Contamination of the Agroecosystem with Stable Strontium Due to Liming: An Overview and Experimental Data

  • Chapter
  • First Online:
Advances in Understanding Soil Degradation

Abstract

This chapter presents the results of a long-term study on the dynamics of calcium and strontium in soil and plants when liming with chalk-containing strontium. The ameliorant used was a conversion chalk obtained as a by-product of the production of complex fertilisers and contained 1.5% stable strontium. Four experiments were conducted to study the behaviour of Ca and Sr in the soil–plant system on acid sod-podzolic soils (Umbric Albeluvisol Abruptic). The specific goal was to trace the entire pathway of Sr from the dissolution of the ameliorant, fixation of Sr in the soil-absorbing complex, migration along the profile and finally accumulation in plants of various biological families and in various plant organs. The results showed that the 1.5% Sr contained in the conversion chalk has a high chemical activity. The complete dissolution of high doses of the chalk was achieved in 3–4 years. The migratory mobility of strontium was determined in a series of column experiments. The amount of leached Sr was found to depend on its initial content in the soils, the humus content (HA1 fraction) and the volume of washing water. It was found that the first fraction of humic acids plays a leading role in the fixation of Sr in non-limed soil, which contained about 50% of the total soil strontium. The addition of the Sr-containing chalk increased the leaching of strontium, but Sr was not completely removed from soil after multiple washings. The results showed that the accumulation of Sr in the generative and vegetative organs of plant was controlled by the barrier and barrier-free mechanisms. Strontium-free conversion chalk can be a highly effective ameliorant for reducing waste dumps generated when processing raw phosphate rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CC:

Conversion chalk

CEC:

Cation exchange capacity

DC:

Discrimination coefficient

GOST:

Acronym for Russian governmental standard

HA:

Humic acid

HA1:

Humic acid fraction 1

HA2:

Humic acid fraction 2

HA3:

Humic acid fraction 3

Hy:

Hydrolytic acidity

MAC:

Maximum allowed concentration

NPK:

Nitrogen, phosphorus, potassium

PAC-1:

Portable Carbonate Analyzer

TA:

Total acidity

WRB:

World Reference Base for Soil Resources

References

  • Adomaitis T, Staugaitis G, Mažvila J, Vaišvila Z, Arbačiauskas J, Lubytė J, Šumskis D, Švėgžda A (2013) Leaching of base cations as affected by a forty-year use of mineral fertilization. Zemdirbyste-Agri 100(2):119–126. https://doi.org/10.13080/z-a.2013.100.015. http://www.zemdirbyste-agriculture.lt/wp-content/uploads/2013/06/100_2_str15.pdf. Accessed 18 Mar 2021

  • Aleksakhin RM, Korneev NM (2001) Agricultural radioecology, Moscow, p 243 (Aлeкcaxин P.M., Кopнeeв H.M. Ceльcкoxoзяйcтвeннaя paдиoэкoлoгия, Mocквa, c. 243)

    Google Scholar 

  • Aleksandrova LN (1970) Soil humic substances: their formation, composition, properties, and value for pedogenesis and fertility. Leningrad, Agricultural Institute, pp 142–232 (Aлeкcaндpoвa Л.H. Гyминoвыe вeщecтвa пoчвы: иx oбpaзoвaниe, cocтaв, cвoйcтвa, знaчeниe для пoчвooбpaзoвaния и плoдopoдия. Лeнингpaд, Ceльcкoxoзяйcтвeнный инcтитyт, c.142: 232.)

    Google Scholar 

  • Annenkov BN, Yudintseva EV (2002) Fundamentals of agricultural radiology. Moscow, p 297 (Aннeнкoв Б.H., Юдинцeвa E.B. Ocнoвы ceльcкoxoзяйcтвeннoй paдиoлoгии, Mocквa, c. 297.)

    Google Scholar 

  • Austenfeld FA (1979) Zur Phytotoxizitat von Nickel- und Kobaltsalzen in Hydrokultur bei Phaseolus vulgais L. Z. Pflanzenernahr und Bodenkunde Bd 142(6):769–777

    Google Scholar 

  • Bakina LG (1987) The effect of liming on the content, composition and properties of humus from clayey Soddy-Podzolic soils. Dissertation for the Candidate of Doctor of Sciences, Leningrad (Бaкинa Л.Г. Bлияниe извecткoвaния нa coдepжaниe, cocтaв и cвoйcтвa гyмyca глиниcтыx дepнoвo-пoдзoлиcтыx пoчв. Диccepтaция нa звaниe кaндидaтa ceльcкoxoзяйcтвeнныx нayк, Лeнингpaд)

    Google Scholar 

  • Bakina LG (2012) Role of fractions of humic substances in soil-ecological processes. Doctoral thesis, Archives of Agrophysical Institute, St. Petersburg, Russia (Бaкинa Л.Г. Poль фpaкций гyминoвыx вeщecтв в пoчвeннo-экoлoгичecкиx пpoцeccax. Дoктopcкaя диccepтaция, Apxив Aгpoфизичecкoгo инcтитyтa, Caнкт-Пeтepбypг, Poccия)

    Google Scholar 

  • Bataille C, Crowley BE, Wooller MJ, Bowen GJ (2020) Advances in global bioavailable strontium isoscapes. Palaeogeogr Palaeoclimatol Palaeoecol 555:109849. https://doi.org/10.1016/j.palaeo.2020.109849

    Article  Google Scholar 

  • Bélanger, Paré D, Hendershot WHCh (2008) Determining nutrient availability in forest soils. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. Canadian Society of Soil Science. Taylor & Francis Group for CRC Press

    Google Scholar 

  • Burakova A, Bakšiene E (2021) Leaching losses of main nutrients by incorporating organic fertilisers into light texture soils Haplic Luvisol. Environ Eng Res 26(4):200190. https://doi.org/10.4491/eer.2020.190

  • Burger A, Lichtscheidl-Schultz I (2018) Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci Total Environ 653:1458–1512. https://doi.org/10.1016/j.scitotenv.2018.10.312

    Article  CAS  Google Scholar 

  • Byhun V, Kraschenko G, Kouchnirenko L, Verkhovod L (1980) Strontium in the diet of corn. In: ‘Trace elements in the environment’ Kiev. Naukova Dumka, pp 35–38 (Быxyн B., и дp. Cтpoнций в paциoнe кyкypyзы. B «Mикpoэлeмeнты в oкpyжaющeй cpeдe» Киeв. Hayкoвa дyмкa cтp. 35–38)

    Google Scholar 

  • Carling GT, Fernandez DP, Rey KA, Hale CA, Goodman MM, Nelson ST (2020) Using strontium isotope to trace dust from a drying Great Salt lake to adjacent urban areas and mountain snowpack. Environ Res Lett 15:114035. https://doi.org/10.1088/1748-9326/abbfc4

    Article  CAS  Google Scholar 

  • Chadwick OA, Derry LA, Bern CR, Vitousek PM (2009) Changing sources of strontium to soil and ecosystems across the Havaiian Islands. Chem Geol 267:64–76. https://doi.org/10.1016/j.chemgeo.2009.01.009

    Article  CAS  Google Scholar 

  • Dinu C, Vasile GG, Buleandra M et al (2020) Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J Soils Sediments 20:2141–2154. https://doi.org/10.1007/s11368-019-02550-w

    Article  CAS  Google Scholar 

  • Dresler S, Wójciak-Kosior M, Sowa I, Strzemski M, Sawicki J, Kováčik J, Blicharski T (2018) Effect of long-term strontium exposure on the content of phytoestrogens and allantoin in soybean. Int J Mol Sci 4;19(12):3864. https://doi.org/10.3390/ijms19123864

  • Dubchak S (2018) Distribution of strontium in soil: interception, weathering, speciation, and translocation to plants 2018. In: Gupta DK, Walther C (eds) Behavior of strontium in plants and the environment. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-66574-0_3

  • Ermokhin YuI, Ivanov AF (1990) On the accumulation of strontium in soils and plants when using mineral fertilizers and phosphogypsum in Western Siberia. In: Proceedings conference ‘microelements in biology and their application in agriculture and medicine’, Samarkand, p 152 (Epмoxин Ю.И., Ивaнoв A.Ф. O нaкoплeнии cтpoнция в пoчвax и pacтeнияx пpи пpимeнeнии минepaльныx yдoбpeний и фocфoгипca в Зaпaднoй Cибиpи. Teзиcы II Bcecoюзнoй кoнфepeнции «Mикpoэлeмeнты в биoлoгии и иx пpимeнeниe в ceльcкoм xoзяйcтвe и мeдицинe», Caмapкaнд, c. 152.)

    Google Scholar 

  • Fedorkova EP, Pakhnenko EP, Sanzharova NI (2012) Chemical forms of radioactive strontium interaction with organic matter of different soil types. Moscow Univ Soil Sci Bull 67(3):133–136. Allerton Press, Inc. (Фeдopкoвa E.П., и дp. Xимичecкиe фopмы взaимoдeйcтвия paдиoaктивнoгo cтpoнция c opгaничecкими вeщecтвaми paзличныx типoв пoчв. Becтник Mocкoвcкoгo yнивepcитeтa пo пoчвoвeдeнию 67 (3): 133–136.)

    Google Scholar 

  • Fernández-Sanjurjo MJ, Alvarez-Rodríguez E, Núñez-Delgado A, Fernández-Marcos ML, Romar-Gasalla A (2014) Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments. Solid Earth 5:1351–1360. https://doi.org/10.5194/se-5-1351-2014

    Article  Google Scholar 

  • Frei R, Frei KM, Jessen S (2020) Shallow retardation of the strontium isotope signal of agricultural liming—implications for isoscapes used in provenance studies. Sci Total Environ 706:135710. https://doi.org/10.1016/J.SCITOTENV.2019.135710

    Article  CAS  Google Scholar 

  • Fukushima Daiichi accident (2015) Technical volume 4/5. Radiological consequences. International Atomic Energy Agency, Vienna, p 262

    Google Scholar 

  • Gorbunov NI, Yudina LN, Zarubina TG (1981) Rate of acid neutralization by lime. Pochvovedenie 1:150–156 (Гopбyнoв H.И. Cкopocть нeйтpaлизaции киcлoт извecтью. Пoчвoвeдeниe)

    Google Scholar 

  • GOST 26213-91 Soils. Methods of determination of soil organic matter (Пoчвы. Meтoды oпpeдeлeния opгaничecкoгo вeщecтвa). http://docs.cntd.ru/document/1200023481

  • Guillen J, Baeza A, Corbacho J, Munoz-Munoz J (2015) Migration of 137Cs, 90Sr, and 239+240Pu in Mediterranea forests: influence of bioavailability and association with organic acids in soil. J Environ Radioact 144:96–102. https://doi.org/10.1016/j.jenvrad.2015.03.011

    Article  CAS  Google Scholar 

  • Gupta D, Deb U, Walther C, Chatterjee S (2018a) Strontium in the ecosystem: transfer in plants via root system. In: Gupta D, Walther C (eds) Behaviour of strontium in plants and the environment. Springer, Switzerland, Cham, pp 1–18

    Chapter  Google Scholar 

  • Gupta DK, Schulz W, Steinhauser G, Walther C (2018b) Radiostrontium transport in plants and phytoremediation. Environ Sci Pollut Res 25:29996–30008. https://doi.org/10.1007/s11356-018-3088-6

    Article  CAS  Google Scholar 

  • Hamilton EJ, Minski MJ (1972) Abundance of the chemical elements in man’s diet and possible relations with environmental factors. Sci Total Environ 1:375–394. https://doi.org/10.1016/0048-9697(73)90025-9

    Article  Google Scholar 

  • Hanaka A, Dresler S et al (2019) The impact of long-term and short-term strontium treatment on metabolites and minerals in Glycine max. Molecules 24(21):3825. https://doi.org/10.3390/molecules24213825

  • Handley R, Overstreet R (1962) Uptake of strontium by roots of Zea mays. Plant Physiol 38:180–184. https://www.atsdr.cdc.gov/toxprofiles/tp159-c6.pdf

  • Höllriegl V, München HZ (2011) Strontium in the environment and possible human health effects. In: Nriagu JO (ed) Encyclopaedia of environmental health. Elsevier, pp 797–802. https://doi.org/10.1016/B978-0-444-52272-6.00638-3

  • Ilyin VB (1991) Heavy metals in the soil-plant system. Novosibirsk, Science, Siberian Branch, p 150 (Tяжёлыe мeтaллы в cиcтeмe пoчвa-pacтeниe. Hayкa. Cибиpcкoe oтдeлeниe)

    Google Scholar 

  • Iserman K (1981) Uptake of stable strontium by plants and effects on plant growth. In: Skornaya SC (ed) Handbook of stable strontium. Plenum Press, New York

    Google Scholar 

  • Ivanov VP (1973) Plant secretions and their importance in the life of phytocenoses. Moscow, Nauka 295 pp (Ивaнoв B.П. Pacтитeльныe выдeлeния и иx знaчeниe в жизни фитoцeнoзoв. Mocквa, Hayкa, c. 295).

    Google Scholar 

  • Jeske A (2013) Mobility and distribution of barium and strontium in profiles of podzolic soils. Soil Sci Ann 64(1):2–7. Verista. https://doi.org/10.2478/ssa-2013-0001

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4 edn. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 548 pp

    Google Scholar 

  • Kabata-Pendias A, Mukherjee A (2007) Trace elements from soil to human. Springer, Berlin, p 550

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (1979) Trace elements in the biological environment, Wid. Geol., Warsaw, 300 pp

    Google Scholar 

  • Kabrick JM, Goyne KW, Fan Zh, Mainert D (2011) Landscape determinants of exchangeable calcium and magnesium in Ozrak Highland forest soils. Soil Sci Soc Am J 75(1):164–180. https://doi.org/10.2136/sssaj2009.0382

    Article  CAS  Google Scholar 

  • Karpova EA, Gomonova NF (2006) Strontium in agrocenosis on sod-podzolic soil under conditions of long-term action and aftereffect of fertilizers. Soil Sci 7:870–875 (Cтpoнций в aгpoцeнoзe нa дepнoвo-пoдзoлиcтoй пoчвe в ycлoвияx длитeльнoгo дeйcтвия и пocлeдeйcтвия yдoбpeний. Пoчвoвeдeниe)

    Google Scholar 

  • Karpova EA, Karpova EA, Potatueva YuA (2004) Consequences of the use of various forms of phosphate fertilizers: strontium in the system of sod-podzolic soil—plants. Agrochemistry 1:91–96 (Пocлeдcтвия пpимeнeния paзличныx фopм фocфopныx yдoбpeний: cтpoнций в cиcтeмe дepнoвo-пoдзoлиcтaя пoчвa – pacтeния. Aгpoxимия)

    Google Scholar 

  • Kashparov V, Lundin S, Zvarych S, Yoshchenko V, Levchuk S, Khomutinin Y, Maloshtan IM, Protsak V (2003) Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ 317:105–119. https://doi.org/10.1016/S0048-9697(03)00336-X

    Article  CAS  Google Scholar 

  • Kashparov VA, Lazarev NM, Polischuk SV (2005) Problems of agricultural radiology in Ukraine at the present stage. Agroecol J 3:31–41 (BA Кaшпapoв, HM Лaзapeв, CB Пoлищyк; Пpoблeмы ceльcкoxoзяйcтвeннoй paдиoлoгии в Укpaинe нa coвpeмeннoм этaпe. Aгpoeкoлoгiчний жypнaл, 31–41)

    Google Scholar 

  • Kazachonok N (2017) Assessment of entry of 90Sr into plants in case of a heterogeneous radiation contamination of ecosystems. In: Gupta D, Walther C (eds) Behaviour of strontium in plants and the environment. Springer, Cham, Switzerland, pp 45–60

    Google Scholar 

  • Kopáček J, Kaňa J, Bičárová S, Fernandez IJ, Hejzlar J, Kahounová M, Norton SA, Stuchlík E (2017) Climate change increasing calcium and magnesium leaching from granitic alpine catchment. Environ Sci Technol 51(1):159–166. https://doi.org/10.1021/acs.est.6b03575

    Article  CAS  Google Scholar 

  • Korneeva NV (1970) The influence of species characteristics of spring wheat on the transition of strontium-90 from soil to plants. Reports of the All-Union Academy of Agricultural Sciences 1:5–7 (Bлияниe видoвыx ocoбeннocтeй яpoвoй пшeницы нa пepexoд cтpoнция-90 из пoчвы в pacтeния. Дoкл. BACXHИЛ)

    Google Scholar 

  • Kowalski VV, Andrianova GA (1970) Trace elements in the soils of the USSR. Moscow, Nauka, p 180 (Кoвaльcки BB, Aндpиaнoвa ГA. Mикpoэлeмeнты в пoчвax CCCP)

    Google Scholar 

  • Kowalski VV, Blokhin RI, Zasorina EF, Nikitina II (1964) The biogeochemical strontium province. In: The proceedings of the meeting on the geochemistry of hypergenesis, Minsk pp 84–93 (Кoвaльcкий B.B., и дp. Биoгeoxимичecкaя cтpoнциeвaя пpoвинция. Mинcк c. 84–93)

    Google Scholar 

  • Kuke D, Shujuan L, Yingxue H, Dong Y, Fengshou Z, Shuifeng W, Jinghua G, Wei Z, Xin W, Xiaoyan J (2016) Simulating the transfer of strontium-90 from soil to leafy vegetables by using strontium-88. Water Air Soil Pollut 227(11):414. https://doi.org/10.1007/s11270-016-3098-2

    Article  CAS  Google Scholar 

  • Labunska I, Levchuk S, Kashparov V, Holiaka D, Yoschenko L, Santillo D, Johnston P (2021) Current radiological situation in areas of Ukraine contaminated by the Chornobyl accident: Part 2. Strontium-90 transfer to culinary grains and forest woods from soils of Ivankiv district. Environ Int 146:106282. https://doi.org/10.1016/j.envint.2020.106282

  • Lavrishchev AV (1997) The effect of conversion chalks on the intake of calcium and strontium in rape plants. In: The abstracts of the international student conference ‘Crisis of soil resources: causes and effects’. St. Petersburg, pp 82–83 (Лaвpищeв A. Bлияниe кoнвepcиoннoгo мeлa нa пocтyплeниe кaльция и cтpoнция в pacтeния. Teзиcы дoклaдoв мeждyнapoднoй cтyдeнчecкoй кoнфepeнции «Кpизиc пoчвeнныx pecypcoв: пpичины и cлeдcтвия». Caнкт-Пeтepбypг)

    Google Scholar 

  • Lavrishchev AV (1999) The dynamics of the content of calcium and strontium compounds available for plants when using conversion chalk for liming acidic soils. In: XXI century—youth, education, ecology, noosphere, pp 65–66 (Динaмикa coдepжaния дocтyпныx для pacтeний coeдинeний кaльция и cтpoнция пpи иcпoльзoвaнии кoнвepcиoннoгo мeлa для извecткoвaния киcлыx пoчв)

    Google Scholar 

  • Lavrishchev AV (2000) Calcium and strontium in the soil-plant system when liming soils with conversion chalk (case study, Acron Novgorod). Doctoral thesis, St. Petersburg, 123 pp (A. Лaвpищeв. Кaльций и cтpoнций в cиcтeмe пoчвa-pacтeниe пpи извecткoвaнии пoчв кoнвepcиoнным мeлoм. Дoктopcкaя диccepтaция)

    Google Scholar 

  • Lavrishchev A, Litvinovich A (2019) Stable strontium in aroecosystems. St. Petersburg, Lan, p 192. ISBN 978-5-8114-3926-3 (Лaвpищeв A., Литвинoвич A. Cтaбильный cтpoнций в aгpoэкocиcтeмax, CПб., Лaнь)

    Google Scholar 

  • Lavrishchev A, Litvinovich A, Bure V, Pavlova O, Saljnikov E (2018) Strontium dynamics in soil and assimilation by plants during dissolution of conversion chalk. Biol Commun 63(3):163–173 https://doi.org/10.21638/spbu03.2018.302

  • Lazarevich NV, Chernukha GA (2007) Behavior of technogenic radionuclides in soil-plant system. Gorki, BGSKhA, 43 pp (Лaзapeвич H.B., Чepнyxa Г.A. Пoвeдeниe тexнoгeнныx paдиoнyклидoв в cиcтeмe пoчвa-pacтeниe. Гopки, БГCXA, cтp.43.43)

    Google Scholar 

  • Lin Q, Qin X, Li F-M, Siddique KHM, Brandl H, Xu J (2015) Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation. Int J Phytorem 17(3):264–271. https://doi.org/10.1080/15226514.2014.898016

    Article  CAS  Google Scholar 

  • Litvinovich AV (1985) Changes in composition and properties of sod-podzolic soils and their fine-dispersed fractions after drying and in long-term agricultural use. Doctoral thesis. Leningrad (Литвинoвич A.B. Измeнeниe cocтaвa и cвoйcтв дepнoвo-пoдзoлиcтыx глeeвaтыx пoчв и иx тoнкoдиcпepcныx фpaкций пpи ocyшeнии и длитeльнoм ceльcкoxoзяйcтвeннoм иcпoльзoвaнии)

    Google Scholar 

  • Litvinovich AV, Nebolsina ZP (2012) Duration of action of lime and liming efficiency. Agrochemistry 10:79–94 (Литвинoвич A.B., Heбoльcинa З.П. Пpoдoлжитeльнocть дeйcтвия мeлиopaнтoв в пoчвax и эффeктивнocть извecткoвaния. Aгpoxимия, 10:79–94)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu (1999) Content and distribution pattern of total and acid-soluble forms of compounds of heavy metals in the profile of gray-earth-oasis soils in the zone of the chemical plant. Agrochemistry 8:68–78 (Литвинoвич A.B., Пaвлoвa Ю.O. Coдepжaниe и ocoбeннocти pacпpeдeлeния вaлoвыx и киcлoтopacтвopимыx фopм coeдинeний тяжёлыx мeтaллoв в пpoфилe cepoзёмнo-oaзиcныx пoчв в зoнe дeйcтвия xимичecкoгo зaвoдa. Aгpoxимия)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, Lavrishchev AV (1998) Effect of various doses of conversion chalk on pass of Sr into plants. In: Humus and soil formation, St. Petersburg, Pushkin, pp 154–159 (Литвинoвич A.B., Пaвлoвa O.Ю., Лaвpищeв A.B. Bлияниe paзличныx дoз кoнвepcиoннoгo мeлa нa пepexoд Sr в pacтeния)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, Lavrishchev AV (1999a) Leaching of calcium and strontium from soil limed with conversion chalk. Agrochemistry 9:64–67 (Литвинoвич A.B., Пaвлoвa O.Ю., Лaвpищeв A.B. O вымывaнии кaльция и cтpoнция из пoчвы, пpoизвecткoвaннoй кoнвepcиoнным мeлoм. Aгpoxимия 9:64–67)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, Lavrishchev AV (1999b) Accumulation of calcium and strontium by plants of various biological families grown on soils with different absorption capacities after reclamation by conversion chalk. In: Field experiments—for sustainable land use. Proceedings of the third international colloquium. International Organization for the Mechanization of Field Experiments and Research (IAMFE). Agrophysical Research Institute, St. Petersburg, pp 153–154 (Haкoплeниe кaльция и cтpoнция pacтeниями paзличныx биoлoгичecкиx ceмeйcтв, выpaщeнныx нa пoчвax c paзличнoй ёмкocтью пoглoщeния пocлe мeлиopaции кoнвepcиoнным мeлoм)

    Google Scholar 

  • Litvinovich AV, Drichko OYu, Pavlova OYu (2000) Evaluation of the parameters of the function of calcium and strontium retention by sod-podzolic sandy loam soil during reclamation by conversion chalk (model experiments). In: Materials of the international scientific-practical conference—modern problems of experimental work, pp 204–210 (Литвинoвич A.B. Дpичкo O.Ю., Пaвлoвa O.Ю. Oцeнкa пapaмeтpoв фyнкции yдepжaния кaльция и cтpoнция дepнoвo-пoдзoлиcтoй cyпecчaнoй пoчвoй пpи мeлиopaции кoнвepcиoнным мeлoм)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, Lavrishchev AV, Bikyukov VA (2001) Decomposition of conversion chalk in sod-podzolic soil due to the threat of contamination with stable strontium. Agrochemistry 11:64–68 (Литвинoвич A.B., Пaвлoвa O.Ю., Лaвpищeв A.B., Бикюкoв B.A. Paзлoжeниe кoнвepcиoннoгo мeлa в дepнoвo-пoдзoлиcтoй пoчвe в cвязи c yгpoзoй eё зaгpязнeния cтaбильным cтpoнциeм. Aгpoxимия)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, LavrishchevAV (2002) Finding ways to use conversion chalk safely. In: Humus and soil formation. St. Petersburg, pp 112–125 (Литвинoвич A.B., Пaвлoвa O.Ю., Лaвpищeв A.B. Пoиcк пyтeй бeзoпacнoгo иcпoльзoвaния кoнвepcиoннoгo мeлa)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, Lavrishchev AV, Vitkovskaya SE (2005) Ecological aspects of liming of soils with conversion chalk. Plodorodie 1:23–26 (Литвинoвич A.B., Пaвлoвa O.Ю., Лaвpищeв A.B., Bиткoвcкaя C.E. Экoлoгичecкиe acпeкты извecткoвaния пoчв кoнвepcиoнным мeлoм. Плoдopoдиe)

    Google Scholar 

  • Litvinovich AV, Pavlova OYu, Yuzmukhametov DN, Lavrishchev AV (2008) The migration capacity of stable strontium in soddy-podzolic soils of the Russian northwest (data of simulation experiments). Eurasian Soil Sci 41(5):502–508. https://doi.org/10.1134/S1064229308050050

    Article  Google Scholar 

  • Litvinovich AV, Nebolsina ZP, Vitkovskaja SE, Yakovleva LV (2011) Effect of long-term use of phosphate fertilizers and ameliorants on the accumulation in soils and plants of stable strontium. Agrohimiya, 11:35–41 (Литвинoвич A.B., Heбoльcинa З.П., Bиткoвcкaя C.E., Якoвлeвa Л.B. Bлияниe длитeльнoгo пpимeнeния фocфopныx yдoбpeний и мeлиopaнтoв нa нaкoплeниe в пoчвax и pacтeнияx cтaбильнoгo cтpoнция. Aгpoxимия 11:35–41)

    Google Scholar 

  • Litvinovich AV, Lavrishchev AV, Pavlova OYu (2013) The behavior of Ca and Sr in the soil-plant system from liming with a strontium-containing ameliorant. In: Proceedings the 1st international Congress on Soil Science, XIII National Congress in Soil Science: “Soil-Water-Plant” 23–26, September, Belgrade, Serbia, pp 17–34. http://data.sfb.bg.ac.rs/sftp/olivera.kosanin/book_of_proceedings.pdf

  • Litvinovich AV, Pavlova OYu, Lavrishchev AV, Bure VM, Kovleva AO (2016) Reclamation properties, fertilizer value and dissolution rate in soils of various sizes of dolomite screenings used for road construction. Agrochemistry 2:31–41 (Литвинoвич A.B., Пaвлoвa O.Ю., Лaвpищeв A.B., Бype B.M., Кoвлeвa A.O. Meлиopaтивныe cвoйcтвa, yдoбpитeльнaя цeннocть и cкopocть pacтвopeния в пoчвax paзличныx пo paзмepy фpaкций oтceвa дoлoмитa, иcпoльзyeмoгo для дopoжнoгo cтpoитeльcтвa. Aгpoxимия)

    Google Scholar 

  • Litvinovich AV, Lavrishchev AV, Bure V, Pavlova O, Kovleva A, Saljnikov E (2018) Influence of limestone and dolomite on the duration of liming effect and Ca losses in Umbric Albeluvisols Abruptic. Agrochimica-Pisa 62(2):143–155. https://doi.org/10.12871/00021857201824

    Article  CAS  Google Scholar 

  • Lykov AM (1986) The influence of permanent crops, crop rotation and fertilizers on the fertility of light loamy sod-podzolic soil. Bull Timiryazev Agri Acad 2:2–13 (Лыкoв A.M. Bлияниe бeccмeнныx кyльтyp, ceвooбopoтa и yдoбpeний нa плoдopoдиe лeгкocyглиниcтoй дepнoвo-пoдзoлиcтoй пoчвы)

    Google Scholar 

  • Lykov AM, Prudnikova AG, Prudnikov AD (2006) To the problem of ecologization of tillage in modern farming systems. Plodorodie 6:1–5 (Лыкoв A.M., Пpyдникoвa A.Г., Пpyдникoв A.Д. К пpoблeмe экoлoгизaции oбpaбoтки пoчвы в coвpeмeнныx cиcтeмax зeмлeдeлия. Плoдopoдиe)

    Google Scholar 

  • Makovsky RD, Prudnikov AD, Dragunov OG (2008) Migration of strontium added with ameliorant. Agrochem Bull 3:10–12 (Maкoвcкий P.Д., Пpyдникoв A.Д., Дpaгyнoв O.Г. Mигpaция cтpoнция, внeceннoгo c мeлиopaнтaми. Aгpoxимичecкий вecтник)

    Google Scholar 

  • Marakushin AV, Fyodorov EA (1977) Sizes of strontium-90 accumulation by field crops during long-term cultivation in crop rotation. Agrochemistry 9:102–107 (Mapaкyшин A.B., Фeдopoв E.A. Beличинa нaкoплeния cтpoнция-90 пoлeвыми кyльтypaми пpи мнoгoлeтнeм выpaщивaнии в ceвooбopoтe Aгpoxимия 9:102)

    Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, Bern (Switzerland), pp 461–474

    Google Scholar 

  • Mineev VG (1989) Ecological problems of agricultural chemistry. Agro-Indus Complex Russia 4:37–39 (Mинeeв B.Г. Экoлoгичecкиe пpoблeмы aгpoxимии. Aгpoпpoмышлeнный кoмплeкc Poccии, 4: 37–39)

    Google Scholar 

  • Minkina TM, Burachevskaya MV, Chaplygin VA, Bakoev SYu, Antonenko EM, Belogorskaya SS (2011) The accumulation of heavy metals in the soil-plant system under pollution. Sci J Russian Res Inst Ameliorat 4 (Mинкинa T.M. и дp. Haкoплeниe тяжёлыx мeтaллoв в cиcтeмe пoчвa-pacтeниe в ycлoвияx зaгpязнeния)

    Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34. https://doi.org/10.1007/BF00638958

    Article  Google Scholar 

  • Moyen C, Roblin G (2010) Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: comparison with Ca effects. Environ Exp Bot 68:247–257. https://doi.org/10.1016/j.envexpbot.2009.12.004

    Article  CAS  Google Scholar 

  • Muravyov AG, Karryev BB, Lyandzberg AR (2000) Assessment of soil ecological state. St. Petersburg, Krismos Publ., 160 pp (Mypaвьeв A.Г. Oцeнкa экoлoгичecкoгo cocтoяния пoчвы)

    Google Scholar 

  • Myrvang MB, Hillersøy MH, Heim M, Bleken MA, Gjengedal E (2016) Uptake of macro nutrients, barium, and strontium by vegetation from mineral soils on carbonatite and pyroxenite bedrock at the Lillebukt Alkaline Complex on Stjernøy, Northern Norway. J Plant Nutr Soil Sci 179(6). https://doi.org/10.1002/jpln.201600328

  • Nebolsin AN, Nebolsina ZP (1997) Change in some properties of the soil absorbing complex of sod-podzolic light loamy soil under the influence of liming. Agrochemistry 10:5–11 (Heбoльcин A.H., Heбoльcинa З.П. Измeнeниe нeкoтopыx cвoйcтв пoчвeннoгo пoглoщaющeгo кoмплeкca дepнoвo-пoдзoлиcтoй лeгкocyглиниcтoй пoчвы пoд влияниeм извecткoвaния. Aгpoxимия)

    Google Scholar 

  • Nebolsin AN, Nebolsina ZP (2005) Theoretical foundations of liming. St. Petersburg, 252 pp (Heбoльcин A.H., Heбoльcинa З.П. Teopeтичecкиe ocнoвы извecткoвaния. Caнкт-Пeтepбypг, 252 c.)

    Google Scholar 

  • Nedobukh and Semenishchev (2020) Strontium: source, occurrence, properties, and detection. In: Pathak P, Gupta DJ (eds) Strointium contamination in the environment. Springer

    Google Scholar 

  • Oufqir S, Bloom PR, Torner BM (2014) The retention of calcium, barium, and strontium ions by a mollisol humic acid: spectroscopic investigation. In: Geophysical research abstracts, vol 16, EGU201 (4-16985), EGU General Assembly. https://meetingorganizer.copernicus.org/EGU2014/EGU2014-16985.pdf. Accessed 18 Mar 2021

  • Pathak P, Gupta DK (2020) Strontium contamination in the environment. Springer. ISBN: 978-3-030-15313-7

    Google Scholar 

  • Paulenová A, Rajec P, Žemberyová M, Sasköiová G, Višcký V (2000) Strontium and calcium complextation by humic acid. J Radioanal Nucl Chem 246(3):623–628. https://doi.org/10.1023/A:1006727409230

    Article  Google Scholar 

  • Pavlotskaya FI (1974) Migration of radioactive products of global fallout in soils. Moscow, Atomizdat, 215 pp (Пaвлoцкaя Ф.И. Mигpaция paдиoaктивныx пpoдyктoв глoбaльныx выпaдeний в пoчвax)

    Google Scholar 

  • Pavlova O, Litvinovich A, Lavrishchev A, Bure V, Saljnikov E (2019) Eluvial losses of Ca from Umbric Albeluvisols Abruptic produced by different doses of lime: column experiment. Zemljiste I Biljka 68(2):1–12. https://doi.org/10.5937/ZemBilj1901001P. http://www.sdpz.rs/images/casopis/2019/zib_68_1_47_pavlova.pdfv. Accessed 18 Mar 2021

  • Pinkas L, Smith L (1966) Physiological bases of differential strontium accumulation in two barley genotypes. Plant Physiol 41(9):1471–1475. http://www.plantphysiol.org/content/plantphysiol/41/9/1471.full.pdf

  • Plotnikova TA, Orlova NE (1984) Application of the modified Ponomareva-Plotnikova procedure for the determination of the composition, nature and properties of soil humus. Pochvovedenie 8:120 (Плoтникoвa T.A., Opлoвa H.E. Пpимeнeниe мoдифициpoвaннoй мeтoдики Пoнoмapeвoй-Плoтникoвoй для oпpeдeлeния cocтaвa, пpиpoды и cвoйcтв пoчвeннoгo гyмyca. Пoчвoвeдeниe)

    Google Scholar 

  • Ponomareva VV, Plotnikova TA (1980) Humus and pedogenesis: methods and results of study. Leningrad. (Пoнoмapeвa B.B., Плoтникoвa T.A. Гyмyc и пoчвooбpaзoвaниe: мeтoды и peзyльтaты изyчeния. Лeнингpaд.)

    Google Scholar 

  • Popov VV, Soloviev GA (1991) Monitoring of soil contamination with heavy metals. Chimizatsia sel’skogo hozyaistva 11:80–82 (Пoпoв B.B., Coлoвьeв Г.A. Moнитopинг зaгpязнeния пoчв тяжeлыми мeтaллaми. Xимизaция Ceльcкoгo Xoзяйcтвa)

    Google Scholar 

  • Pousada-Ferradás Y, Seoane-Labandeira S, Mora-Gutiérrez A, Núñez-Delgado A (2012) Risk of water pollution due to ash-sludge mixtures: column trials. Int J Environ Sci Technol 9:1–29. https://doi.org/10.1007/s13762-011-0014-6

    Article  CAS  Google Scholar 

  • Rafferty P, Shiao S-Y, Binz CM, Meyer RE (1981) Adsorption of Sr(II) on clay minerals: effects of salt concentration, loading, and pH. J Inorg Nuclear Chem 43(4):797–805. https://doi.org/10.1016/0022-1902(81)80224-2

    Article  CAS  Google Scholar 

  • Rowley MC, Grand S, Verrecchia EP (2018) Calcium-mediated stabilization of soil organic carbon. Biogeochemistry 137(1–2):27–49. https://doi.org/10.1007/s10533-017-0410-1

    Article  CAS  Google Scholar 

  • Sahoo SK, Kavasi N, Sorimachi A, Arae H, Tokonami Sh, Mietelski JW, Lokas E, Yoshida S (2016) Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. Sci Rep 6(23925). https://www.nature.com/articles/srep23925

  • Sanzharova NI (2005) Role of chemistry in the rehabilitation of agricultural lands exposed to radioactive contamination. Russian Chem J 3:22–34. (PDF) Distribution of strontium in soil: interception, weathering, speciation, and translocation to plants. https://doi.org/10.1007/978-3-319-66574-0_3. https://www.researchgate.net/publication/320692180. Accessed 18 Mar 2021

  • Sarret G, Saumitow-Laprade P, Bert V, Proax O, Hazemam JL, Traverse AS, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyper accumulator Arabidopsis halleri. Plant Physiol 130:1815–1826. https://doi.org/10.1104/pp.007799

    Article  CAS  Google Scholar 

  • Sasmaz M, Uslu Senel G, Obek E (2020) Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environ Geochem Health. https://doi.org/10.1007/s10653-020-00629-9

  • Sekine Yu, Motokawa R, Kozai N, Ohnuki T, Matsumura D, Tsuji T, Kawasaki R, Akiyoshi K (2017) Calcium-deficient hydroxyapatite as a potential sorbent for strontium. Sci Rep 7:2064. https://doi.org/10.1038/s41598-017-02269-z

    Article  CAS  Google Scholar 

  • Sheudzhen AKh (2003) Biogeochemistry. Maykop: GURIPP “Adygea”, 1028 pp (Шeyджeн A.X. Биoгeoxимия. Maйкoп: ГУPИПП «Aдыгeя», 2003, cтp 1028)

    Google Scholar 

  • Shilnikov IA, Akanova NI, Fedotova LS (2004) Determination of calcium losses from arable soils in the field experiments. Plodorodie 2:21–23 (Шильникoв И.A., Aкaнoвa H.И., Фeдoтoвa Л.C. Oпpeдeлeниe пoтepь кaльция c пaxoтныx пoчв в пoлeвыx oпытax. Плoдopoдиe 2: 21–23)

    Google Scholar 

  • Solecki J, Chibowski S (2002) Studies on Horizontal and vertical migration of 90Sr in soil systems. Polish J Environ Stud 11(2):157–163

    CAS  Google Scholar 

  • Sowa I, Wójciak-Kosior M, Strzemski M, Dresler S, Szwerc W, Blicharski T, Szymczak G, Kocjan R (2014) Biofortification of soy (Glycine max (L.) Merr.) with strontium ions. J Agric Food Chem 62(23):5248–5252. https://doi.org/10.1021/jf501257r

  • Stekolnikov KE, Kotov VV, Sokolova SA, Tsyplakov SE (2011) Modeling the process of interaction of heavy metal cations with humic acids. In: Collection of papers: innovative fundamental and applied research in the field of chemistry in agricultural production, pp 56–62 (Cтeкoльникoв К.E. и дp. Moдeлиpoвaниe пpoцecca взaимoдeйcтвия кaтиoнoв тяжёлыx мeтaллoв c гyмycoвыми киcлoтaми)

    Google Scholar 

  • Sudhakaran M, Ramamoorthy D, Savitha V, Balamurugan S (2018) Assessment of trace elements and its influence on physico-chemical and biological properties in coastal agroecosystem soil, Puducherry region. Geol Ecol Landscapes 2(3):169–176. https://doi.org/10.1080/24749508.2018.1452475

    Article  Google Scholar 

  • Sysoeva A, Konopleva I, Sanzharova N (2005) Bioavailability of radiostrontium in soil: experimental study and modelling. J Environ Radioact 81:269–282. https://doi.org/10.1016/j.jenvrad.2004.01.040

    Article  CAS  Google Scholar 

  • Thomsen E, Andreased R (2019) Agricultural lime disturbs natural strontium isotope variations: implications for provenance and migration studies. Sci Adv 5(3):eaav8083. https://doi.org/10.1126/sciadv.aav8083

  • Thor K, Jiang S, Michard E et al (2020) The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585:569–573. https://doi.org/10.1038/s41586-020-2702-1

    Article  CAS  Google Scholar 

  • Titov AF, Talanova VV, Kaznina NM, Laidinen GF (2007) Plant resistance to heavy metals. Petrozavodsk, Russia, p 172 (Tитoв A.Ф. и дp. Уcтoйчивocть pacтeний к тяжeлым мeтaллaм. Пeтpoзaвoдcк, Poccия, c. 172)

    Google Scholar 

  • Toikka MA, Perevozchikova EM, Levkina TI (1981) Strontium in soils and cities of Karelia. In: Trace elements in the environment. Kiev, Naukova Dumka Publisher, pp 28–30 (Toйккa M.A. и дp. Cтpoнций в пoчвax и гopoдax Кapeлии. Mикpoэлeмeнты в oкpyжaющeй cpeдe)

    Google Scholar 

  • Tyurin IV (1937) Soil organic matter. Sel’hozgiz, Moscow-Leningrad, p 270 (Tюpин И.B. Opгaничecкoe вeщecтвo пoчвы M.-Л. Ceльxoзгиз)

    Google Scholar 

  • Tyuryukanova EB (1976) Ecology of strontium-90 in soils. Moscow, Atomizdat, 128 pp (Tюpюкaнoвa E.B. Экoлoгия cтpoнция-90 в пoчвax)

    Google Scholar 

  • Van Bergeijk KE, Noordijk H, Lembrechts J, Frissel MJ (1992) Influence of pH, soil type and soil organic matter content on soil-to-plant transfer of radiocesium and strontium as analysed by a nonparametric method. J Environ Radioact 15(3):265–276. https://doi.org/10.1016/0265-931X(92)90062-X

    Article  Google Scholar 

  • Vidal M, Camps M, Grebenshikova N et al (2001) Soil- and plant-based countermeasures to reduce 137Cs and 90Sr uptake by grasses in natural meadows. J Environ Radioact 56:139–156. https://doi.org/10.1016/S0265-931X(01)00051-0

    Article  CAS  Google Scholar 

  • Vinogradov AP (1952) Patterns of the distribution of trace elements. In: Trace elements in the life of plants and animals. Moscow (Bинoгpaдoв A.П. Зaкoнoмepнocти pacпpeдeлeния микpoэлeмeнтoв)

    Google Scholar 

  • Walsh T (1945) The effect on plant growth of substituted strontium for calcium in acid soils. Proc Roy Irish Acad B 50:287

    Google Scholar 

  • WRB (2007) IUSS Working Group WRB. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome

    Google Scholar 

  • Yaseen W Sajjad B, Azam I, Ajaz H (2020) Effects of Heavy Metals on Plant Growth and Metal Accumulation in Moringa Plant. Int Res J Sci Tech 1(2):126–137. https://irjst.com/wp-content/uploads/March2020-v1-i2/IRJST122008.pdf. Accessed 18 Mar 2021

  • Yoshioka K, Moeder W (2020) Calcium channel in plants helps shut the door on intruders. Nature 585:507–508. https://doi.org/10.1038/d41586-020-02504-0

    Article  CAS  Google Scholar 

  • Youngil C, Driscoll CT, Johnson CE, Siccama TG (2009) Chemical changes in soil and soil solution after calcium silicate addition to a Northern Hardwood Forest. Biogeochemistry 100(1–3):3–20. https://doi.org/10.1007/s10533-009-9397-6. https://www.jstor.org/stable/40800606

  • Yudintseva EV, Gulyakin IV (1998) Agrochemistry of radioactive isotopes of caesium and strontium. Atomizdat, Moscow, p 415. (Юдинцeвa E.B., Гyлякин И.B. Aгpoxимия paдиoaктивныx изoтoпoв цeзия и cтpoнция. Aтoмиздaт, Mocквa, cтp.415.)

    Google Scholar 

  • Yudintseva EV, Mamontova LA (1979) Behavior of 90Sr in soils upon application of phosphate, lime and peat. Soil Sci 12:51–61 (Юдинцeвa E.B., Maмoнтoвa Л.A. Пoвeдeниe 90Sr в пoчвax пpи внeceнии фocфaтoв, извecти и тopфa. Пoчвoвeдeниe)

    Google Scholar 

  • Yurenski IM (1849) On the ugliness of the inhabitants of the banks of the river Urov in Eastern Siberia. Proc Imp Free Econ Soc (Юpeнcкий И.M. Oб ypoдливocти житeлeй бepeгoв peчки Уpoв в Bocтoчнoй Cибиpи)

    Google Scholar 

  • Zhang X, Wang W (2015) The decomposition of fine and coarse roots: global patterns and their controlling factors. Sci Rep 5:9440. https://doi.org/10.1038/srep09940

  • Zhang W, Kang Z, Wang Q, Qiu N, Chen M, Zhou F (2020) The biological effects of strontium (88Sr) on Chinese cabbage. Plant Soil Environ 66:149–154. https://doi.org/10.17221/108/2020-PSE

  • Zubareva IF, Moskevich LP, Kovenya SV (1989) Strontium-90 removal from drained soil during water erosion. Agrochemistry 4:144–147 (Зyбapeвa и дp. Bынoc cтpoнция-90 из дpeниpoвaннoй пoчвы в пpoцecce вoднoй эpoзии. Aгpoxимия)

    Google Scholar 

Download references

Acknowledgements

The preparation of this chapter was partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contract no. 451-03-68/2020-14.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavrishchev, A., Litvinovich, A.V., Pavlova, O.Y., Bure, V.M., Schindler, U., Saljnikov, E. (2022). Contamination of the Agroecosystem with Stable Strontium Due to Liming: An Overview and Experimental Data. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_20

Download citation

Publish with us

Policies and ethics