Skip to main content

Understanding Soils: Their Functions, Use and Degradation

  • Chapter
  • First Online:
Advances in Understanding Soil Degradation

Abstract

Soils, the thin skin of the earth, a living body, are the basis of all highly developed life and have ensured human existence and culture since millennia. Their functions and ecosystem services are crucial for the survival of humanity. Increasing pressure on soils through overuse and mismanagement has exceeded their capacity to perform, which is considered as soil degradation. To meet the mission of the Sustainable Development Goals of the United Nations, soil degradation must be stopped and reversed. We reviewed framework conditions of soil degradation, scientific concepts of research and status and trends of their operationalization. Soil performance and degradation processes must be understood, monitored, mitigated and combated in the context of different categories and scales such as ecosystems, land and landscapes. Approaches to the assessment and monitoring of soil dynamics, degradation and desertification show inconsistencies and knowledge gaps at several levels. Concepts of soil health and ecosystem services of soil should be backed by “hard data” based on field and landscape indicators and measurements. Participatory approaches to mediate conflicting demands of stakeholders are crucial for a broad understanding of soil and its long-term sustainable use. This requires an advanced field diagnostic system of soil performance based on reliable on-site measurement technology in combination with expert-based knowledge and assessment methodologies. Strengthening field soil science is essential for progress in reducing and reversing soil degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Aridity index

CASH:

Comprehensive assessment of soil health

CICES:

Common international classification of ecosystem services

DEX:

Decision EXpert

DPSIR:

Driving forces, pressures, states, impacts and responses

DSS:

Decision support system

EC:

Electrical conductivity

EEA:

European environmental agency

ENVASSO:

Environmental assessment of soil for monitoring

ES:

Ecosystem services

ESAI:

Environmentally sensitive area index

EU:

European union

FAO:

Food and agriculture organization of the united nations

GLASOD:

Global assessment of soil degradation

LCA:

Life cycle analysis

LRC:

Land resource circle concept

MDS:

Minimum data sets

M-SQR:

Muencheberg soil quality rating

N2O:

Nitrous oxide

NDVI:

Normalized difference vegetation index

PCA:

Principal component analysis

RUSLE:

Revised universal soil loss equation

SAR:

Sodium absorption ratio

SDG:

Sustainable development goals

SD:

Soil degradation

SB:

Soil biodiversity

SF:

Soil fertility

SH:

Soil health

SMAF:

Soil management assessment framework

SoilHealthDB:

Soil health DataBase

SOM:

Soil organic matter (SOM)

SQ:

Soil quality

SQI:

Soil quality index

UAV:

Unmanned aerial vehicle

UN:

United Nations

UNCCD:

United Nations convention to combat desertification

UNEP:

United nation environmental programme

VESS:

Visual examination of soil structure

VSA:

Visual soil assessment method

WRB:

World reference base for soil resources

References

  • Abdollahpour M, Rahnemaie R, Lutzenkirchen J (2020) The vulnerability of calcareous soils exposed to Mg-rich irrigation water. Land Degrad Develop. https://doi.org/10.1002/ldr.3605

    Article  Google Scholar 

  • Adhikari K, Hartemink AE (2016). Linking soils to ecosystem services: a global review. Geoderma 262:101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

  • Alaoui A, Barao L, Ferreira CSS, Schwilch G, Basch G, Garcia‐Orenes F, Morugan A, Mataix‐Solera J, Kosmas C, Glavan M, Szabó B, Hermann T, Vizitiu OP, Lipiec J, Frąc M, Reintam E, Xu M, Di J, Fan H, Sukkel W, Lemesle J, Geissen V, Fleskens L (2020) Visual assessment of the impact of agricultural management practices on soil quality. Agron J. https://doi.org/10.1002/agj2.20216

  • Ali MA, Dong L, Dhau J, Khosla A, Kaushik A (2020) Perspective-electrochemical sensors for soil quality assessment. J Electrochem Soc 167(3). https://doi.org/10.1149/1945-7111/ab69fe/meta

  • Amato F, Martellozzo F, Nolè G, Murgante B (2017) Preserving cultural heritage by supporting landscape planning with quantitative predictions of soil consumption. J Cult Heritage 23:44–54. https://doi.org/10.1016/j.culher.2015.12.009

  • Andersson KO, Orgill SE (2019) Soil extension needs to be a continuum of learning; soil workshop reflections 10 years on. Soil Use Manage 35:117–127. https://doi.org/10.1111/sum.12486

  • Andrews SS, Karlen DL, Mitchell JP (2002) A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agr Ecosyst Environ 90:25–45. https://doi.org/10.1016/S0167-8809(01)00174-8

    Article  Google Scholar 

  • Antrop M, Van Eetvelde V (2019) Territory and/or scenery: concepts and prospects of western landscape research. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-30069-2_1

  • Arshad MA, Coen GM (1992) Characterization of soil quality: physical and chemical criteria. Am J Altern Afr 7:25–31

    Article  Google Scholar 

  • Arshad MA, Martin S (2002) Identifying critical limits for soil quality indicators in agro-ecosystems. Agr Ecosyst Environ 88:153–160. https://doi.org/10.1016/S0167-8809(01)00252-3

    Article  Google Scholar 

  • Arvidsson J, Keller T (2007) Soil stress as affected by wheel load and tyre inflation pressure. Soil Tillage Res 96:284–291. https://doi.org/10.1016/j.still.2007.06.012

    Article  Google Scholar 

  • Ascough JC, Rector HD, Hoag DL, Mcmaster GS, Vandenberg BC, Shaffer MJ, Weltz MA, Ahuja LR (2002) Multicriteria spatial decision support systems for agriculture: overview, applications, and future research directions. Environmental modeling international conference proceedings. In: Rizzoli AE, Jakeman AJ (eds) Integrated assessment and decision support proceedings of the 1st biennial meeting of the IEMSS. Lugano, Switzerland, vol 3, pp 175–180

    Google Scholar 

  • Badenko V, Topaj A, Medvedev S, Zakharova E, Dunaeva I (2020) Estimation of agro-landscape productivity in regional scale using dynamic crop models in a GIS-environment. In: Mirschel W, Terleev V, Wenkel KO (eds) Landscape modelling and decision support. Innovations in Landscape Research. Springer, Cham, pp 545–565. https://doi.org/10.1007/978-3-030-37421-1_28

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. 24(3):223–234. https://doi.org/10.1111/j.1475-2743.2008.00169.x

  • Ball BC, Batey T, Munkholm LJ (2007) Field assessment of soil structural quality: a development of the Peerlkamp test. Soil Use Manage. 23:329–337

    Article  Google Scholar 

  • Ball BC, Guimarães RML, Cloy JM, Hargreaves PR, Shepherd TG, McKenzie BM (2017) Visual soil evaluation: a summary of some applications and potential developments for agriculture. Soil Tillage Res 173:114–124. https://doi.org/10.1016/j.still.2016.07.006

  • Bampa F, O’Sullivan MK et al (2019) Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis. Soil Use Manag 35(1):6–20. https://doi.org/10.1111/sum.12506

    Article  Google Scholar 

  • Bartkowski B, Bartke S, Helming K, Paul C, Techen A-K, Hansjürgens B (2020) Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy. Peer J 8:e8749. https://doi.org/10.7717/peerj.8749. eCollection 2020

  • Bartlett D, Milliken S (2019) Landscape character and ecosystem services assessment: a case study from India. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham, pp 521–543. https://doi.org/10.1007/978-3-030-30069-2_23

  • Batjes NH, Ribeiro Eloi, van Oostrum A (2020) Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst Sci Data 12:299–320. https://doi.org/10.5194/essd-12-299-2020

  • Baveye PC, Chalhoub M, Choquet P, Montagne D (2018) Is the focus on “Ecosystems” a liability in the research on Nature’s services? Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00226

  • Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in northern Germany: reference ranges and time-series data. Soil Organisms 81:175–196

    Google Scholar 

  • Blum WEH (2005) Functions of soil for society and the environment. Rev Environ Sci Biotechnol 4(3):75–79

    Article  Google Scholar 

  • Blum WEH, Nortcliff S (2013) Soils and food security, in Soils and human health. In: Brevik EC, Burgess LC (eds). CRC Press, Boca Raton, FL, USA, pp 290–321

    Google Scholar 

  • Blum WEH, Eswaran H (2004) Soils for sustaining global food production. J Food Sci 69(2):37–42. https://doi.org/10.1111/j.1365-2621.2004.tb15490.x

    Article  Google Scholar 

  • Blum, WEH (2008) Characterization of soil degradation risk: an overview. In: Toth G, Montanarella L, Rusco E (eds) Threats to soil quality in Europe, Ispra, Italy. JRC Scientific and Technical Reports EUR 23438 EN, pp. 5–10

    Google Scholar 

  • Blum WEH (2012) Boenkunde in Stichworten.Gebr. Borntraeger, Stuttgart, Germany

    Google Scholar 

  • Blum WEH (2013) Soil and land resources for agricultural production: general trends and future scenarios-a worldwide perspective. Int Soil Water Conserv Res 1(3):1–14. https://doi.org/10.1016/S2095-6339(15)30026-5

  • Boardman J, Vandaele K, Evans R, Foster IDL (2019) Off‐site impacts of soil erosion and runoff: why connectivity is more important than erosion rates. Soil Use Manage 35(2):245–256. https://doi.org/10.1111/sum.12496

  • Bochtis DD, Sørensen CGC, Busato P (2014) Advances in agricultural machinery management: a review. Biosys Eng 126:69–81

    Article  Google Scholar 

  • Boehn MM, Anderson DW (1997) A landscape-scale study of soil quality in three prairie farming systems. Soil Sci Soc Am 61:1147–1159

    Google Scholar 

  • Borelli P, Robinson D, Fleischer L et al (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8(1):2013. https://doi.org/10.1038/s41467-017-02142-7

    Article  CAS  Google Scholar 

  • Bouma J (2014) Soil science contributions towards sustainable development goals and their implementation: linking soil functions with ecosystem services. J Soil Fert Soil Sci 177:111–120. https://doi.org/10.1002/jpln.201300646

    Article  CAS  Google Scholar 

  • Bouma J, Batjes NH (2000) Trends of world-wide soil degradation. In: Böcker R (ed) Hohenheimer Umwelttagung 32. Verlag Gunter Heimbach, pp 33–43

    Google Scholar 

  • Bouma J (2019a) Soil security in sustainable development. Soil Syst 3(1):5. https://doi.org/10.3390/soilsystems3010005

  • Bouma J (2019b) How to communicate soil expertise more effectively in the information age when aiming at the UN sustainable development goals. Soil Use Manage 35(1):32–38. https://doi.org/10.1111/sum.12415

  • Bünemann EK, Bongiornoa G, Bai Zh, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality: a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

  • Campellone RM, Chouinard KM, Fisichelli NA, Gallo JA, Lujan JR, McCormick RJ, Miewald TA, Murry BA, Pierce DJ, Shively DR (2019) The iCASS platform: nine principles for landscape conservation design. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham, pp 339–365. https://doi.org/10.1007/978-3-030-30069-2_14

  • Carlon CE (2007) Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, Italy, 306 pp

    Google Scholar 

  • Cashmore M (2004) The role of science in environmental impact assessment: process and procedure versus purpose in the development of theory. Environ Impact Assess Rev 24(4):403–426. https://doi.org/10.1016/j.eiar.2003.12.002

  • CEN (2020) European committee for standardization, CEN/TC 444 test methods for environmental characterization of solid matrices. https://www.cen.eu/work/ENdev/Pages/default.aspx. Accessed on 22 Dec 2020

  • Chen XD, Dunfield KE, Fraser TD, Wakelin SA, Richardson AE, Condron LM (2020) Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research 58:1–20. https://doi.org/10.1071/SR19067

    Article  Google Scholar 

  • Cherubin MR, Karlen DL, Franco ALC, Cerri CEP, Tormena CA, Cerri CC (2016) A soil management assessment framework (SMAF) evaluation of Brazilian sugarcane expansion on soil quality. Soil Sci Soc Am J 80:215–226. https://doi.org/10.2136/sssaj2015.09.0328

  • Chumbaev AS, Tanasienko AA (2016) Measuring Snowmelt in Siberia: Causes, Process, and Consequences. In: Mueller L., Sheudshen A., Eulenstein F. (eds) Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water. Springer, Cham, pp. 213–231, https://doi.org/10.1007/978-3-319-24409-9_7

  • Corstanje R, Mercer TG, Rickson JR, Deeks LK, Newell-Price P, Holman I, Kechavarsi C, Waine TW (2017) Physical soil quality indicators for monitoring British soils. Solid Earth 8:1003–1016. https://doi.org/10.5194/se-8-1003-2017

    Article  Google Scholar 

  • Costanza R, DArge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Google Scholar 

  • Costanza R, de Groot R, Braat L, Kubiszewski I, Fioramonti L, Sutton P, Farber S, Grasso M (2017) Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst Serv 28:1–16. https://doi.org/10.1016/j.ecoser.2017.09.008

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23. https://doi.org/10.1038/415023a

    Article  CAS  Google Scholar 

  • Daily GC, Matson PA, Vitousek PM (1997) Ecosystem services supplied by soil. In: Daily G (ed) Nature’s services: societal dependence on natural ecosystems. Washington, DC, Island Press, pp 113–132

    Google Scholar 

  • Dickson RW (1805) Practical agriculture, or, a complete system of modern husbandry, with the methods of planting and the management of livestock, vol 1. R. Phillips, London

    Google Scholar 

  • DIN 19706:2013–02 (2013) Soil quality: determination of the soil erosion risk caused by wind (In German: Bodenbeschaffenheit - Ermittlung der Erosionsgefährdung von Böden durch Wind). https://www.beuth.de/de/norm/din-19706/169471310. Accessed on May 23, 2020.

  • Dinter A, Oberwalder C, Kabouw P, Coulson M, Ernst G, Leicher T, Miles M, Weyman G, Klein O (2013) Occurrence and distribution of earthworms in agricultural landscapes across Europe with regard to testing for responses to plant protection products. J Soils Sediments 13:278–293

    Article  Google Scholar 

  • Dobrovolskiy GV, Kust GS, Sanaev VG (eds) (2012) Soils in biosphere and life of human. Monograph, Moscow, Publishing house of the Moscow State Forest University, 584 pp (In Russian: Г.B. Дoбpoвoльcкий, Г.C. Кycт, Caнaeв B.Г. Пoчвы в биocфepe и жизни чeлoвeкa. Moнoгpaфия Mocквa. Издaтeльcтвo Mocкoвcкoгo гocyдapcтвeннoгo yнивepcитeтa лeca. 2012, 584 c)

    Google Scholar 

  • Dokuchaev VV (1951) Izbranniye sochineniya, vol VI. Moscow, 515 p

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15(2000):3–11

    Article  Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 1996(56):1–54

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining soil quality for a sustainable environment. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) SSSA Spec Pub 35, Madison WI

    Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Inc., Madison, Wisconsin, USA

    Google Scholar 

  • Dotterweich M (2013) The history of human-induced soil erosion: geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology 201:1–34. https://doi.org/10.1016/j.geomorph.2013.07.021

    Article  Google Scholar 

  • Dregne HE (1977) Desertification of arid lands. J Econ Geogr 53(4): 322–331. The Human Face of Desertification

    Google Scholar 

  • Drobnik T, Greiner L, Keller A, Grêt-Regamey A (2018) Soil quality indicators: from soil functions to ecosystem services. Ecol Indicators 94:151–169. https://doi.org/10.1016/j.ecolind.2018.06.052

  • Drobnik T, Schwaab J, Grêt-Regamey A (2020) Moving towards integrating soil into spatial planning: No net loss of soil-based ecosystem services. J Environ Manage 263:110406. https://doi.org/10.1016/j.jenvman.2020.110406

  • Dubovyk O (2017) The role of remote sensing in land degradation assessments: opportunities and challenges. Eur J Remote Sensing 50(1):601–613. https://doi.org/10.1080/22797254.2017.1378926

    Article  Google Scholar 

  • Dumanski J, Pieri C (2000) Land quality indicators: research plan. Agr Ecosyst Environ 81(2):93–102. https://doi.org/10.1016/S0167-8809(00)00183-3

    Article  Google Scholar 

  • DWA (2018) DWA Regelwerk Merkblatt DWA-M 920–4 Bodenfunktionsansprache- Teil 4: Ableitung des landwirtschaftlichen Ertragspotenzials nach dem Müncheberger Soil Quality Rating. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA), 36 p. ISBN 978–3–88721–715–0 (E-book)

    Google Scholar 

  • Dwivedi RS (2018) Geospatial technologies for land degradation assessment and management. CRC Press Boca Raton

    Google Scholar 

  • Eberle J (2019) Web service-based exploration of earth observation time-series data for analyzing environmental changes. Ph.D. thesis Jena, p. 201. https://www.db-thueringen.de/receive/dbt_mods_00040272. Accessed on 23 May 2019

  • EEA (2020) Land and soil: towards the sustainable use and management of these vital resources. https://www.eea.europa.eu/signals/signals-2019-content-list/articles/land-and-soil-towards-the. Accessed on 23 May 2020

  • Emmet-Booth JP, Forristal BD, Fenton O, Bondi G, Holden NM (2019) Visual soil evaluation—spade vs. profile methods and the information conveyed for soil management. Soil Tillage Res 187:135–143. https://doi.org/10.1016/j.still.2018.12.002

  • Enne G, Zucca C (2000) Desertification indicators for the European Mediterranean region: state of the art and possible methodological approaches [= Indicatori di desertificazione per il Mediterraneo europeo: stato dell'arte e proposte di metodo]. http://eprints.uniss.it/3166/1/Enne_G_Libro_2000_Desertification.pdf

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening FW, de Vries T, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings of the 2nd international conference on land degradation and desertification, Khon Kaen, Thailand. Oxford Press, New Delhi, India. Online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054028. Accessed on 23 May 2020

  • Eurostat (2019) https://ec.europa.eu/eurostat/web/environment/environmental-indicator-catalogue. Accessed on 23 May 2020

  • Evans S (2019) The “Age of Agricultural Ignorance”: trends and concerns for agriculture knee-deep into the twenty-first century. Agric Hist 93(1):4–34. Agricultural history society. https://doi.org/10.3098/ah.2019.093.1.004. https://www.jstor.org/stable/10.3098/ah.2019.093.1.004. Accessed on 25 Dec 2019

  • Faber J, Suhadolc M, Römbke J, Schmidt O, Krogh PH, De Groot A, Keith AM, Chabbi A (2020) EcoFINDERS: earthworms, water infiltration and soil aggregates (in prep.)

    Google Scholar 

  • FAO (2020) Soil testing methods manual—soil doctors global programme: a farmer-to-farmer training programme. Rome. https://doi.org/10.4060/ca2796en

    Article  Google Scholar 

  • FAO (1994) GLASOD methodology http://www.fao.org/3/v4360e/V4360E04.htm. In: World soil resources reports 1994. Food and agriculture organization of the united nations. Rome, 1994. http://www.fao.org/3/v4360e/V4360E00.htm#Contents. Accessed on 23 May 2020

  • FAO (2003) The design of land consolidation pilot projects in central and Eastern Europe. FAO Land Tenure Studies 6, Rome, 2003. http://www.fao.org/3/Y4954E/y4954e00.htm. Accessed on 23 May 2020

  • FAO (2015) World soil charter. http://www.fao.org/3/a-mn442e.pdf. Accessed on 23 May 2020

  • FAO (2019) The state of the world’s biodiversity for food and agriculture. In: Belanger J, Pilling D (eds) FAO Commission on Genetic Resources for Food and Agriculture Assessment. Rome 572 pp. http://www.fao.org/3/CA3129EN/CA3129EN.pdf

  • FAO (2020b) FAO soils portal 2020. http://www.fao.org/soils-portal/about/all-definitions/en/. Accessed on 23 May 2020

  • FAO/ITPS (2015) Status of the world’s soil resources (SWSR)—main report. Rome, Italy, food and agriculture organization of the united nations and intergovernmental technical panel on soils, 607 pp. http://www.fao.org/3/a-i5199e.pdf. Accessed on 23 May 2020

  • FAO/UNEP (1984) Provisional methodology for assessment and mapping of desertification. Food and Agriculture Organization of the United Nations, United Nations Environmental Programme, Rome, 73 pp

    Google Scholar 

  • Florinsky I (2016) Digital terrain analysis in soil science and geology, 2nd edn. Elsevier 2016, 486 pp

    Google Scholar 

  • Foley J, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström R, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478: 337–342. https://doi.org/10.1038/nature10452

  • Franko U, Witing F (2020) Dynamics of soil organic matter in agricultural landscapes. In: Mirschel W, Terleev V, Wenkel KO (eds) Landscape modelling and decision support. Innovations in landscape research. Springer, Cham, pp 283–298. https://doi.org/10.1007/978-3-030-37421-1_14

  • Frühauf M, Guggenberger G, Meinel T, Theesfeld I, Lentz S (eds) (2020) KULUNDA: climate smart agriculture. South Siberian agro-steppe as pioneering region for sustainable land use. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-15927-6

  • Funk R (2016) Assessment and measurement of wind erosion. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham, pp 425–449. https://doi.org/10.1007/978-3-319-24409-9_18

  • Gajić B, Kresović B, Pejić B, Tapanarova A, Dugalić G, Životić Lj, Sredojević Z, Tolimir M (2020) Some physical properties of long-term irrigated fluvisols of valley the river Beli Drim in Klina (Serbia). Zemljiste I Biljka 69(1):21–35. http://www.sdpz.rs/images/casopis/2020/zin_69_1_64.pdf

  • Gardi C, Montanarella L, Arrouays D, Bispo A, Lemanceau P, Jolivet C, Mulder C, Ranjard L, Römbke J, Rutgers M, Menta C (2009) Soil biodiversity monitoring in Europe: ongoing activities and challenges. Eur J Soil Sci 60:807–819

    Article  CAS  Google Scholar 

  • Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21. https://doi.org/10.1016/j.apgeog.2014.11.024

  • Giuliani G, Chatenoux B, Benvenuti A, Lacroix P, Santoro M, Mazzetti P (2020) Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15 -exploring the potential of data cube. Big Earth Data 4(1):3–22. https://doi.org/10.1080/20964471.2020.1711633

  • Glante F, Marx M, Römbke J (2018) Chapter II/18: soil monitoring in Germany. In: Sychev VG, Mueller L (Eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol II understanding and monitoring processes in soils and water bodies. © FSBI “VNII Agrochemistry”, pp 89–93. https://doi.org/10.25680/7493.2018.26.90.115, http://vniia-pr.ru/monografii/pdf/tom2-18.pdf. Accessed on 23 May 2020

  • Gobin A, Jones R, Kirkby M, Campling P, Govers G, Kosmas C, Gentile AR (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Policy 7(1):25–38. https://doi.org/10.1016/j.envsci.2003.09.004

  • Griffiths BS, Römbke J, Schmelz R, Scheffczyk A, Faber J, Bloem J, Peres G, Cluzeau D, Chabbi A, Suhadolc M, Sousa JP, Martins da Silva P, Carvalho F, Mendes S, Morais P, Francisco R, Costa D, Pereira C, Bonkowski M, Geisen S, Bardgett RD, Bolger T, Schmidt O, Winding A, Hendriksen NB, Johansen A, Philippot L, Plassart P, Bru D, Thomson B, Griffiths RI, Rutgers M, Mulder C, Hannula E, Creamer R, Stone D (2016) Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function (EcoFINDERS). Ecol Indicators. 69:213–223

    Article  Google Scholar 

  • Grosse M, Hoffmann C, Specka X, Svoboda N (2020) Chapter 9: managing long-term experiment data: a repository for soil and agricultural research. In: Bhullar GS, Riar A (eds) Long-term farming systems research ensuring food security in changing scenarios 2020, pp 167–182. https://doi.org/10.1016/B978-0-12-818186-7.00010-2

  • Grunewald K, Bastian O, Mannsfeld K (2015) Development and fundamentals of the ES approach. In: Grunewald K, Bastian O (eds) Ecosystem services—concept, methods and case studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44143-5_2

  • Gruszecka-Kosowska A, Baran A, Wdowin M et al (2020) The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study. Environ Geochem Health 42:419–442. https://doi.org/10.1007/s10653-019-00372-w

    Article  CAS  Google Scholar 

  • Gubler A, Wächter D, Schwab P, Hug A, Meuli R, Keller A (2018) Chapter II/19: long-term observation of soils within the swiss soil monitoring network NABO. In: Sychev VG, Mueller L (Eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, vol II understanding and monitoring processes in soils and water bodies. © FSBI “VNII Agrochemistry”, pp 93–99. https://doi.org/10.25680/4039.2018.68.24.116. http://vniia-pr.ru/monografii/pdf/tom2-19.pdf. Accessed on 23 May 2020

  • Guerra CA, Rosa IMD, Valentini E et al (2020) Global vulnerability of soil ecosystems to erosion. Landscape Ecol. https://doi.org/10.1007/s10980-020-00984-z

    Article  Google Scholar 

  • Guo M, Yang B, Wang W et al (2019) Distribution, morphology and influencing factors of rills under extreme rainfall conditions in main land on the Loess Plateau of China. Geomorphology 345:106847. https://doi.org/10.1016/j.geomorph.2019.106847

    Article  Google Scholar 

  • Gupta R, Sahoo RN, Abrol I (2019) Does soil testing for fertilizer recommendation fall short of a soil health card? J Agron Res 1(3):15–26. https://doi.org/10.14302/issn.2639-3166.jar-18-2496

    Article  Google Scholar 

  • Gura I, Mnkeni PNS (2019) Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma 337:927–934. https://doi.org/10.1016/j.geoderma.2018.10.042

  • Haines-Young R, Potschin MB (2018) Common international classification of ecosystem services (CICES) V5.1 and guidance on the application of the revised structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf. Accessed on 23 May 2020

  • Hassen G, Bantider A (2020) Assessment of drivers and dynamics of gully erosion in case of Tabota Koromo and Koromo Danshe watersheds, South Central Ethiopia. Geoenviron Disasters 7, 5 (2020).https://doi.org/10.1186/s40677-019-0138-4

  • Hatfield JL, Sauer TJ, Cruse RM (2017) Soil: the forgotten piece of the water, food, energy Nexus. Adv Agron 143:1–46. https://doi.org/10.1016/bs.agron.2017.02.001

  • Heintz-Buschart A, Guerra C, Djukic I, Cesarz S, Chatzinotas A, Patoine G, Sikorski J, Buscot F, Küsel K, Wegner C-E, Eisenhauer N (2020) Microbial diversity-ecosystem function relationships across environmental gradients. Res Ideas Outcomes 6:e52217. https://doi.org/10.3897/rio.6.e52217

    Article  Google Scholar 

  • Hennings V, Höper H, Mueller L (2016) Small-scale soil functional mapping of crop yield potentials in Germany. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_27

  • Hennings V (2014) Use of pedotransfer functions for land evaluation: mapping groundwater recharge rates under semi-arid conditions. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham, pp 249–262. https://doi.org/10.1007/978-3-319-01017-5_14

  • Herrick JE, Shaver P, Pyke DA, Pellant M, Toledo D, Lepak N (2019) A strategy for defining the reference for land health and degradation assessments. Ecol Indicators 97:225–230. https://doi.org/10.1016/j.ecolind.2018.06.065

  • Hole FD (1978) An approach to landscape analysis with emphasis on soils. Geoderma 21(1):1–23. https://doi.org/10.1016/0016-7061(78)90002-2

  • Höss S, Römbke J (2019) Effects of waste materials on Caenorhabditis elegans (Nematoda) using the ISO standard soil toxicity test. Environ Sci Pollut Res 26:26304–26312. https://doi.org/10.1007/s11356-019-05891-8

    Article  CAS  Google Scholar 

  • Huang J, Peng S, Mao X, Li F, Guo S, Shi L et al (2019) Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county. Process Saf Environ Prot 126:339–347

    Article  Google Scholar 

  • Huber S, Prokop G, Arrouays D, Banko G, Bispo A, Jones RJA, Kibblewhite MG, Lexer W, Möller A, Rickson RJ, Shishkov T, Stephens M, Toth G, Van den Akker JJH, Varallyay G, Verheijen FGA, Jones AR (eds) (2008) Environmental assessment of soil for monitoring: volume I indicators & criteria. EUR 23490 EN/1, Office for the Official Publications of the European Communities, Luxembourg, 339 pp. https://doi.org/10.2788/93515

  • IPBES (2018) Intergovernmental science-policy platform on biodiversity and ecosystem services (IPBES) summary for policymakers of the assessment report on land degradation and restoration of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: Scholes R, Montanarella L, Brainich A, Barger N, ten Brink B, Cantele M, Erasmus B, Fisher B, Gardner T, Holland TJ et al (eds) IPBES Secretariat. Bonn, Germany. https://www.ipbes.net/system/tdf/spm_3bi_ldr_digital.pdf?file=1&type=node&id=28335. Accessed on 23 May 2020

  • ISO 15799:2019–11 (2019) Soil quality—guidance on the ecotoxicological characterization of soils and soil materials

    Google Scholar 

  • ISO 17616:201911 (2019) Soil quality—Guidance on the choice and evaluation of bioassays for ecotoxicological characterization of soils and soil materials

    Google Scholar 

  • Issanova G, Abuduwaili J (2017) Aeolian processes as dust storms in the deserts of Central Asia and Kazakhstan. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-3190-8

  • IUSS Working Group WRB (2014) World reference base for soil resources 2014. In: Schad P, van Huyssteen C, Micheli E (eds) World soil resources reports no. 106. FAO, Rome, 189 p. ISBN 978–92–5–108369–7

    Google Scholar 

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Franceschini MHD, Kramer H, van Loo EN, Roman VJ, Finkers R (2019) UAV based soil salinity assessment of cropland. Geoderma 338:502–512. https://doi.org/10.1016/j.geoderma.2018.09.046

  • Jänsch S, Kaiser F, Krogh PH, Natal-da-Luz T, Rojo V, Scheffczyk A, Schmelz RM, Sousa J-P, Vierna J, Vizcaíno A, Römbke J (2019) Determination of soil invertebrate diversity using morphological and DNA-based methods at 25 sites in Germany: first experiences. In: 14th SETAC Europe special science symposium, 2019. https://www.forskningsdatabasen.dk/en/catalog/2471459646. Accessed on 23 May 2020

  • Jarrah M, Mayel S, Tatarko J, Funk R, Kuka K (2020) A review of wind erosion models data requirements, processes, and validity. CATENA 187:104388. https://doi.org/10.1016/j.catena.2019.104388

    Article  Google Scholar 

  • Jeffrey S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Römbke J, Van der Putten W (eds) (2010) European atlas of soil biodiversity. European Commission, Publications Office of the European Union, Luxembourg. EUR 24375 EN, 128 pp

    Google Scholar 

  • Jian J, Du X, Stewart RD (2020) A database for global soil health assessment. Sci Data 7:16. https://doi.org/10.1038/s41597-020-0356-3

  • Jones C, Engel R, Olson-Rutz K (2020) Soil acidification in the semiarid regions of North America’s Great Plains. Crops and Soils 52(2):28–56. https://doi.org/10.2134/cs2019.52.0211

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition and framework for evaluation, Soil Sci. Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Karlen DL, Nancel CD, Dinnes DL, Meek DW (2013) SMAF: a soil health assessment tool. Jour Iowa Acad Sci 120(1–4):1–13

    Google Scholar 

  • Karlen DL, Veum KS, Sudduth KA, Obrycki JF, Nunes MR (2019). Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res. Elsevier B.V. https://doi.org/10.1016/j.still.2019.104365

  • Kaufmann-Boll C, Kern M, Niederschmidt S (2020) Soil data in Germany. Overview of the most important measurement and survey activities for soils (In German; Bodendaten in Deutschland. Übersicht über die wichtigsten Mess- und Erhebungsaktivitäten für Böden. UBA-TEXTE 52/2020, 196 pp. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020-05-04_texte_broschuere_bodendaten.pdf. Accessed on 23 May 2020

  • Kazakov LK (2019) Landscape ecology culture and some principles of sustainable nature use. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-30069-2_3

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, van der Putten WH, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128. https://doi.org/10.5194/soil-2-111-2016

    Article  Google Scholar 

  • Keller T, Sandin M, Colombi T, Horn R, Or D (2019) Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res 194. https://doi.org/10.1016/j.still.2019.104293

  • Khan MN, Mobin M, Abbas ZK, Alamri SA (2018) Fertilizers and their contaminants in soils, surface and groundwater. In: Dominick A, Sala D, Goldstein MI (eds) The encyclopedia of the Anthropocene, vol 5. Elsevier, Oxford, pp 225–240

    Google Scholar 

  • Kibblewhite MG, Jones RJA, Montanarella L, Baritz R, Huber S, Arrouays D, Micheli E, Stephens M (eds) (2008) Environmental assessment of soil for monitoring volume VI, soil monitoring system for Europe; Office for Official Publications of the European Communities: Luxembourg, 72 pp. https://doi.org/10.2788/95007

  • Körte W (1839): Albrecht Thaer. Sein Leben und Wirken, als Arzt und Landwirth. 1839, Brockhaus Leipzig 442 p

    Google Scholar 

  • Kosmas C, Kairis O, Karavitis C, Ritsema C, Salvati L et al. (2014) Evaluation and selection of indicators for land degradation and desertification monitoring: types of degradation, causes, and implications for management. Environ Manage 54(5):971-982. https://doi.org/10.1007/s00267-013-0109-6.ird-01223238

  • Kouselou M, Hashemi S, Eskandari I, McKenzie BM, Karimi E, Rezaei A, Rahmati M (2018) Quantifying soil displacement and tillage erosion rate by different tillage systems in dryland, northwest of Iran. Soil Use Manag 34:48–59

    Article  Google Scholar 

  • Kundler P (1989) Erhöhung der Bodenfruchtbarkeit.VEB Deutscher Landwirtschaftsverlag Berlin, 1st edn, 452 pp

    Google Scholar 

  • LADA (2013) Land degradation assessment in drylands, LADA project, methodology and results. Food and Agriculture Organization of the United Nations. Rome, 2013, 56 pp

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. https://doi.org/10.1126/science.1097396

    Article  CAS  Google Scholar 

  • Larson WE, Pierce FJ (1991) Conservation and enhancement of soil quality. In: Dumanski J et al (eds) Evaluation for sustainable land management in the developing world, vol 2. Technical papers, pp 175–203

    Google Scholar 

  • Lee EJ, Piao D, Song C, Kim J, Lim C-H, Kim E, Moon J, Kafatos M, Lamchin M, Jeon SW, Lee W-K (2019) Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. Forest Sci Technol 15(4):210–220. https://doi.org/10.1080/21580103.2019.1667880

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JJ, Kremer RJ, Lundgren JG, Ducey TF, Jin VL, Karlen DL (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7(1):988–1027. https://doi.org/10.3390/su7010988

  • Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC (2020) The concept and future prospects of soil health. Nat Rev Earth Environ 1:544–553. https://doi.org/10.1038/s43017-020-0080-8

  • Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180. https://doi.org/10.1038/nature14258

    Article  CAS  Google Scholar 

  • Lilburne L, Eger A, Mudge P, Ausseil A-G, Stevenson B, Herzig A, Beare M (2020) The land resource circle: supporting land-use decision making with an ecosystem-service-based framework of soil functions. Geoderma 363:114134. https://doi.org/10.1016/j.geoderma.2019.114134

  • Litvin LF, Kiryukhina ZP, Krasnov SF, Dobrovolskaya NG, Gorobets AV (2021) Geography of the dynamics of agricultural erosion of soils in Siberia and the Far East. Soil Science (In Russian: Литвин Л. Ф., Киpюxинa З. П., Кpacнoв C. Ф., Дoбpoвoльcкaя H. Г., Гopoбeц A. B. Гeoгpaфия динaмики зeмлeдeльчecкoй эpoзии пoчв Cибиpи и Дaльнeгo Bocтoкa // Пoчвoвeдeниe. 2021. № 1. C. 136–148) https://doi.org/10.31857/S0032180X2101007X

  • Liu X, Shi H, Bai Z, Liu X, Yang B, Yan D (2020) Assessing soil acidification of croplands in the Poyang lake basin of China from 2012 to 2018. Sustainability 12:3072. https://doi.org/10.3390/su12083072

  • Da Luz FB, Da Silva VR, Mallmann FJK, Pires CAB, Debiasi H, Franchini JC, Cherubin MR (2019) Monitoring soil quality changes in diversified agricultural cropping systems by the soil management assessment framework (SMAF) in southern Brazil. Agric Ecosyst Environ 281:100–110. https://doi.org/10.1016/j.agee.2019.05.006

  • Makó A, Kocsis M, Barna GY, Tóth G (2017) Mapping the storing and filtering capacity of European soils. EUR 28392. https://doi.org/10.2788/49218

  • McKenzie DC (2013) Visual soil examination techniques as part of a soil appraisal framework for farm evaluations in Australia. Soil Tillage Res 127:26–33

    Article  Google Scholar 

  • McKenzie DC (ed) (1998) SOILpak for cotton growers—third edition. NSW Agriculture

    Google Scholar 

  • MEA (2005) Millennium ecosystem assessment. Ecosystems and human well-being: synthesis. Washington, DC, Island Press, 800 pp. https://www.millenniumassessment.org/documents/document.356.aspx.pdf. Accessed on 23 May 2020

  • Mirschel W, Berg-Mohnicke M, Wieland R, Wenkel K-O, Terleev VV, Topaj AG, Mueller L (2020) Modelling and simulation of agricultural landscapes. In: Mirschel W, Terleev VV, Wenkel K-O (eds) Landscape modelling and decision support. Innovations in landscape research. Springer, Cham, pp 3–21. https://doi.org/10.1007/978-3-030-37421-1_1

  • Mirzabaev A, Wu J, Evans J, García-Oliva F, Hussein IAG, Iqbal MH, Kimutai J, Knowles T, Meza F, Nedjraoui D, Tena F, Türkeş M, Vázquez RJ, Weltz M (2019) Desertification. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. https://www.ipcc.ch/srccl/chapter/chapter-3/. Accessed on 23 May 2020

  • Mission Board (2020) Mission board soil health and food (2020) Caring for soil is caring for life. Ensure 75% of soils are healthy by 2030 for healthy food, people, nature and climate. Luxembourg: Publications Office of the European Union, 2020, 52 pp. ISBN 978–92–76–19954–0. https://doi.org/10.2777/918775

  • Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ, van Es HM, Thies JE, Shayler HA, McBride MB, Kurtz KSM, Wolfe DW, Abawi GS (2016) Comprehensive assessment of soil health—the Cornell framework. Edition 3.2, Cornell University, Geneva, NY, 123 pp

    Google Scholar 

  • Montgomery D (2007) Soil erosion and agricultural sustainability. In: Proceedings of the national academy of sciences of the United States of America, vol 104, 13268–13272. https://doi.org/10.1073/pnas.0611508104

  • De Montis A (2014) Impacts of the European landscape convention on national planning systems: a comparative investigation of six case studies. Landscape Urban Planning 124:53–65. https://doi.org/10.1016/j.landurbplan.2014.01.005

  • M-SQR Manual (2007) http://www.zalf.de/de/forschung_lehre/publikationen/Documents/Publikation_Mueller_L/field_mueller.pdf. Accessed on 23 May 2020

  • Mueller L, Schindler U, Mirschel W, Shepherd TG, Ball B, Helming K, Rogasik J, Eulenstein F, Wiggering H (2010) Assessing the productivity function of soils: a review. Agron Sustain Dev 30(3):601–614. https://doi.org/10.1051/agro/2009057

    Article  Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012a) Closing yield gaps through nutrient and water management. Nature 490:254–257. https://doi.org/10.1038/nature11420

    Article  CAS  Google Scholar 

  • Mueller L, Schindler U, Shepherd TG, Ball BC, Smolentsev E, Hu C, Hennings V, Schad P, Rogasik J, Zeitz J, Schlindwein SL, Behrendt A, Helming K, Eulenstein F (2012b) A framework for assessing agricultural soil quality on a global scale. Arch Agron Soil Sci 58(Supplement 1):S76–S82

    Google Scholar 

  • Mueller L, Shepherd G, Schindler U, Ball BC, Munkholm LJ, Hennings V, Smolentseva E, Rukhovich O, Lukin S, Hu C (2013) Evaluation of soil structure in the framework of an overall soil quality rating. Soil Tillage Res 127:74–84

    Google Scholar 

  • Mueller L, Behrend, A, Shepherd TG, Schindler U, Ball BC, Khudyaev S, Kaiser T, Dannowski R, Eulenstein F (2014) Simple field methods for measurement and evaluation of grassland quality. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, Cham, pp 199–222. https://doi.org/10.1007/978-3-319-01017-5_11

  • Mueller L, Schindler U, Hennings V, Smolentseva EN, Rukhovich OV, Romanenkov VA, Sychev VG, Lukin S, Sheudshen AK, Onishenko L, Saparov A, Pachikin K, Behrendt A, Mirschel W, Eulenstein F (2016) An emerging method of rating global soil quality and productivity potentials. In: Mueller L, Sheudshen AK, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer International Publishing, Cham, pp 573–595 http://link.springer.com/chapter/10.1007%2F978-3-319-24409-9_26

  • Mueller L, Eulenstein F, Mirschel W, Antrop M, Jones M, McKenzie BM, Dronin NN,. Kazakov LK, Kravchenko VV, Khoroshev A, Gerasimova M, Dannowski R, Schindler U, Ruhovich O, Sychev VG, Sheudzhen AK, Couvet D, Robinson G, Blum W, Joniak T, Eisendle U, Trovato MG, Salnjikov E, Haubold-Rosar M, Knoche D, Köhl M, Bartlett D, Hoffmann J, Römbke J, Glante F, Sumina OI, Saparov A, Bukvareva E, Terleev VV, Topaj AG, Kienast F (2019) Landscapes, their exploration and utilisation: status and trends of landscape research. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham, pp 105–164. https://doi.org/10.1007/978-3-030-30069-2_5

  • Mueller L, Eulenstein F, Dronin NM, Mirschel W, McKenzie BM, Antrop M, Jones M, Dannowski R, Schindler U, Behrendt A, Rukhovich OV, Sychev VG, Sheudzhen AK, Romanenkov VA, Trofimov I, Robinson GM, Schreg R, Blum WEH, Salnjikov E, Saparov A, Pachikin K, Römbke J, Manton M, Angelstam P, Hennings V, Poulton P (2021) Agricultural landscapes: history, status and challenges. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Springer Cham, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Müller F, Fohrer N, Chicharo L (2015) The basic ideas of the ecosystem service concept. In: Chicharo L, Müller F, Fohrer N (eds) Ecosystem services and river basin ecohydrology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9846-4_2

  • Murphy BW, Crawford MH, Duncan DA, McKenzie DC, Koen TB (2013) The use of visual soil assessment schemes to evaluate surface structure in a soil monitoring program. Soil Tillage Res 127:3–12

    Article  Google Scholar 

  • Nachtergaele FON (2000) Soil vulnerability evaluation and location fragility assessment. In: Sequi P (ed) Proceedings international congress on soil vulnerability and sensitivity (Florence, 18–21 October 1999). European Soil Bureau and Italian Society of Soil Science, Florence

    Google Scholar 

  • Newell-Price JP, Whittingham MJ, Chambers BJ, Peel S (2013) Visual soil evaluation in relation to measured soil physical properties in a survey of grassland soil compaction in England and Wales. Soil Tillage Res 127:65–73

    Article  Google Scholar 

  • Nguyen KA, Liou YA, Tran HP, Hoang PP, Nguyen TH (2020) Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from landsat 8 OLI data: a case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog Earth Planet Sci 7, 1. https://doi.org/10.1186/s40645-019-0311-0

  • Nikiforoff CC (1937) Some general aspects of the chernozem formation. Soil Sci Soc Am J 1(C):333–342

    Google Scholar 

  • Nikiforova AA, Bastian O, Fleis ME, Nyrtsov MV, Khropov AG (2019) Theoretical development of a natural soil-landscape classification system: an interdisciplinary approach. CATENA 177:238–245. https://doi.org/10.1016/j.catena.2019.02.026

  • Oldeman LR, Van Lynden GWJ (1998) Revisiting the GLASOD methodology. In: Lal R, Blum WH, Valentine C, Steward BR (eds) Methods for assessment of soil degradation. CRC press, pp 423–440, 555 pp

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1990). World map of the status of human-induced soil degradation: an explanatory note. Wageningen, International Soil Reference and Information Centre ISRIC, Wageningen and UNEP; Nairobi, 27 pp + 3 maps

    Google Scholar 

  • Oldeman LR (1992) Global extent of soil degradation. ISRIC Bi-Annual Report 1991–1992, pp 19–36. https://library.wur.nl/WebQuery/wurpubs/fulltext/299739. Accessed on 23 May 2020

  • Olenin O, Zudilin S, Osorgin Yu, Shevchenko S, Chernov A (2020) Digital monitoring of agro-ecosystems indicators on the basis of space and unmanned technologies BIO Web Conf. Volume 17, 2020. https://doi.org/10.1051/bioconf/20201700113

  • Olsson L, Barbosa H, Bhadwal S, Cowie A, Delusca K., Flores-Renteria D, Hermans K, Jobbagy E, Kurz W, Li D, Sonwa DJ, Stringer L, (2019) Land degradation. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/srccl/chapter/chapter-4/. Accessed on 23 May 2020

  • Orlova T, Melnichuk A, Klimenko K, Vitivitskaya V, Popovych V, Dunaieva I, Terleev V, Nikonorov A, Togo, I, Volkova Y, Mirschel W, Garmanov V (2017) Reclamation of landfills and dumps of municipal solid waste in a waste management system: methodology and practice. In: IOP conference series: earth and environmental science, vol 90, Aricle No.: 012110, 13 p. https://doi.org/10.1088/1755-1315/90/1/012110

  • Ouyang W, Skidmore AK, Hao F, Wang T (2010) Soil erosion dynamics response to landscape pattern. Sci Total Environ 408(6):1358–1366. https://doi.org/10.1016/j.scitotenv.2009.10.062

  • Packer IJ, Chapman GA, Lawrie JW (2019) On-Ground extension of soil information to improve land management. Soil Use Manag 35(1):75–84. https://doi.org/10.1111/sum.12494

    Article  Google Scholar 

  • Panagos P, Van Liedekerke M (2008) Multi-scale European soil information system (Meusis): novel ways to derive soil indicators through upscaling. In: Toth G, Montanarella L, Rusco E (eds) Threats to soil quality in Europe, Ispra, Italy, pp 5–10, pp 139–150. JRC Scientific and Technical Reports EUR 23438 EN

    Google Scholar 

  • Panagos P, Ballabio C, Poesen J, Lugato E, Scarpa S, Montanarella L, Borrelli PA (2020) Soil erosion indicator for supporting agricultural, environmental and climate policies in the European Union. Remote Sens 12:1365. https://doi.org/10.3390/rs12091365

  • Parkhomenko GG, Voinash SA, Sokolova VA, Krivonogova AS, Rzhavtsev AA (2019) Reducing the negative impact of undercarriage systems and agricultural machinery parts on soils. IOP Conf Series Earth Environ Sci 316: 012049. https://doi.org/10.1088/1755-1315/316/1/012049

  • Patzel N, Sticher H, Karlen DL (2000) Soil fertility—phenomenon and concept. J Plant Nutr Soil Sci 163(2): 129–142. https://doi.org/10.1002/(SICI)1522-2624(200004)163:2<129::AID-JPLN129>3.0.CO;2-D

  • Pimentel D, Burgess M (2013) soil erosion threatens food production. Agriculture 3(3):443–463. https://doi.org/10.3390/agriculture3030443

  • Poulton PT, Johnston AE (2020) Can long-term experiments help us understand, and manage, the wider landscape—examples from Rothamsted, England. In: Exploring and optimizing agricultural landscapes. Springer 2020, in printISBN 978–3–030–67448–9

    Google Scholar 

  • Prasuhn V (2020) Twenty years of soil erosion on‐farm measurement: annual variation, spatial distribution and the impact of conservation programmes for soil loss rates in Switzerland. Earth surface processes and landforms. https://doi.org/10.1002/esp.4829

  • Prishchepov AV, Schierhorn F, Dronin N, Ponkina EV, Müller D (2020) 800 years of agricultural land-use change in Asian (Eastern) Russia. In: Frühauf M, Guggenberger G, Meinel T, Theesfeld I, Lentz S (eds) KULUNDA: climate smart agriculture. Innovations in landscape research. Springer, Cham. https://doi.org/10.1007/978-3-030-15927-6_6

  • Pulido Moncada M, Gabriels D, Lobo D, Rey JC, Cornelis WM (2014) Visual field assessment of soil structural quality in tropical soils. Soil Tillage Res 139:8–18

    Article  Google Scholar 

  • Qu L, Dong G, De Boeck H, et al (2020) Joint forcing by heat and mowing poses a threat to grassland ecosystem: evidence from a manipulative experiment. Land Degrad Develop 785–800. https://doi.org/10.1002/ldr.3483

  • Rinot O, Levy GJ, Steinberger Y, Svoray T, Eshel G (2019) Soil health assessment: a critical review of current methodologies and a proposed new approach. Sci Total Environ 648:1484–1491. https://doi.org/10.1016/j.scitotenv.2018.08.259

  • Roesch A, Weisskopf P, Oberholzer, Valsangiacomo A, Nemecek T (2019) An approach for describing the effects of grazing on soil quality in life-cycle assessment. Sustainability 11:4870

    Google Scholar 

  • Romanenkov VA, Shevtsova LK, Rukhovich OV, Belichenko MV (2020) Chapter 8: geographical network: legacy of the Soviet era long-term field experiments in Russian agriculture. In: Bhullar GS, Riar A (eds) Long-term farming systems research. Ensuring Food Security in Changing Scenarios, pp 147–165. https://doi.org/10.1016/B978-0-12-818186-7.00009-6

  • Römbke J, Bernard J, Martin-Laurent F (2018) Standard methods for the assessment of structural and functional diversity of soil organisms: a review. Integr Environ Assess Manage (IEAM) 14:463–479

    Article  Google Scholar 

  • Römbke J, Sousa J-P, Schouten T, Riepert F (2006) Monitoring of soil organisms: a set of standardized field methods proposed by ISO. Eur J Soil Biol 42:S61–S64. https://doi.org/10.1016/j.ejsobi.2006.07.016

  • Russell DJ, Krogh PH (2020) EUdaphobase—European soil‐biology data warehouse for soil protection global symposium on soil biodiversity. FAO HQ, Rome, Italy. https://pure.au.dk/portal/files/177775095/GSOBI20_Abstract_RUSSELL.pdf. Accessed on 2 Sept 2020

  • Salvati L, Zitti M, Ceccarelli T, Perini L (2009) Developing a synthetic index of land vulnerability to drought and desertification. Geogr Res 473:280–291

    Article  Google Scholar 

  • Salvia R, Egidi G, Vinci S, Salvati L (2019) Desertification risk and rural development in Southern Europe: permanent assessment and implications for sustainable land management and mitigation policies. Land 8:191

    Google Scholar 

  • Schindler U, Mueller L, Behrendt A (2003) Field investigations of soil hydrological properties of fen soils in North-East Germany. J Plant Nutr Soil Sci 166(3):364–369. https://doi.org/10.1002/jpln.200390056

    Article  CAS  Google Scholar 

  • Schindler U, Thiere J, Steidl J, Mueller L (2004) Bodenhydrologische Kennwerte heterogener Flächeneinheiten: Methodik der Ableitung und Anwendungsbeispiel für Nordostdeutschland. Landesumweltamt Brandenburg, Potsdam, 56 pp. http://www.lfu.brandenburg.de/cms/media.php/lbm1.a.3310.de/lua_bd87.pdf. Accessed on 23 May 2020

  • Schjønning P, Akker J, Keller T, Greve M, Lamandé M, Simojoki A, Stettler M, Arvidsson J, Breuning-Madsen H (2016) Soil compaction. Chapter 6. In: Stolte J et al (eds) Soil threats in Europe; EUR 27607 EN. https://doi.org/10.2788/488054 (print). https://doi.org/10.2788/828742 (online). https://doi.org/10.2788/828742

  • Schulte RPO, Creamer RE, Donnellan T, Farrelly N, Fealy R, O'Donoghue C, O'Huallachain D (2014) Functional land management: a framework for managing soil‐based ecosystem services for the sustainable intensification of agriculture. Environ Sci Policy 38:45–58. https://doi.org/10.1016/j.envsci.2013.10.002

  • Schwilch G, LemannT, Berglund Ö, Camarotto C, Cerdà A; Daliakopoulos I, Kohnová S, Krzeminska D, Marañón T, Rietra R, Siebielec G, Thorsson J, Tibbett M, Valente S, van Delden H, van den Akker Jan, Verzandvoort S, Vrînceanu NO, Zoumides C, Hessel R (2018) Assessing impacts of soil management measures on ecosystem services. Sustainability 10(12):4416. https://www.mdpi.com/2071-1050/10/12/4416

  • Seaton FM, Barrett G, Burden A, Creer S, Fitos E, Garbutt A, Griffiths RI, Henrys P, Jones DL, Keenan P, Keith A, Lebron I, Maskell L, Pereira MG, Reinsch S, Smart SM, Williams B, Emmett BA, Robinson DA (2020) Soil health cluster analysis based on national monitoring of soil indicators. Eur J Soil Sci. https://doi.org/10.1111/ejss.12958

  • Sekera F (1943) Gesunder und kranker Boden. Ein praktischer Wegweiser zur Gesunderhaltung des Ackers, Wien, p 1943

    Google Scholar 

  • Shepherd TG (2000) Visual soil assessment, vol 1, Field guide for cropping and pastoral grazing on flat to rolling country, Horizons.mw/Landcare Research, Palmerston North, 84 p

    Google Scholar 

  • Shepherd TG (2009) Visual soil assessment, vol 1. Field guide for pastoral grazing and cropping on flat to rolling country, 2nd ed., Horizons Regional Council, Palmerston North, New Zealand, 118 p

    Google Scholar 

  • Singer MJ, Ewing S (2000) Soil quality. Chapter 11. In: Sumner ME (ed) Handbook of soil science. CRC Press Boca Raton, FL, pp 271–298

    Google Scholar 

  • Smeets E, Weterings R (1999) Environmental indicators: typology and overview. Eur Environ Agency 19

    Google Scholar 

  • Smetanová A, Follain S, David M, Ciampalini R, Raclot D, Crabit A, Le Bissonnais Y (2019) Landscaping compromises for land degradation neutrality: the case of soil erosion in a Mediterranean agricultural landscape. J Environ Manage 235:282–292. https://doi.org/10.1016/j.jenvman.2019.01.063

  • Smolentseva E, Smolentsev B, Pachkin K, Mueller L (2014) Assessing the soil quality and crop yield potentials of some soils of Eurasia. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, pp 505–517. https://doi.org/10.1007/978-3-319-01017-5_31

  • Snakin VV, Krchetov PP, Kuzovnikova TA, Alyabina IO, Gurov AF, Stepichev AV (1996) The system of assessment of soil degradation. Soil Tech 8:331–343

    Article  Google Scholar 

  • Soil Health Team (2020) Cornell university. Comprehensive assessment of soil health https://soilhealth.cals.cornell.edu/testing-services/. Accessed on 23 May 2020

  • Sommer S, Zucca, C, Grainger A, Cherlet M, Zougmore R, Sokona Y, Hill J (2011) Application of indicator systems for monitoring and assessment of desertification from national to global scales. Land Degrad Develop 22:184–197. https://doi.org/10.1002/ldr.1084

  • Sonderegger T, Pfister S, Hellweg S (2020) Assessing impacts on the natural resource soil in life cycle assessment: methods for compaction and water Erosion. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c01553

    Article  Google Scholar 

  • IPCC SRCCL (2019) Chapter 4: land degradation, 186 pp. https://www.ipcc.ch/site/assets/uploads/2019/08/2e.-Chapter-4_FINAL.pdf. accessed on 23 May 2020

  • Steffan JJ, Brevik EC, Burgess LC, Cerdà A. The effect of soil on human health: an overview. Eur J Soil Sci 69(1):159–171. https://doi.org/10.1111/ejss.12451

  • Steininger M, Wurbs D (2016) Bundesweite Gefährdung der Böden durch Winderosion und Bewertung der Veränderung infolge des Wandels klimatischer Steuergrößen als Grundlage zur Weiterentwicklung der Vorsorge und Gefahrenabwehr im Bodenschutzrecht. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-11-30_texte_13-2017_winderosion-ackerflaechen.pdf. Accessed on 23 May 2020

  • Stocking MA, Murnaghan N (2002) A Handbook for the field assessment of land degradation. Routledge London, 169 pp. https://doi.org/10.4324/9781849776219

  • Sychev VG, Yefremov EN, Romanenkov VA (2016) Monitoring of soil fertility (agroecological monitoring). In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-24409-9_24

  • Tamene L, Sileshi GW, Ngengu G, Mponela P, Kihara J, SilaA TJ (2019) Soil structural degradation and nutrient limitations across land use categories and climatic zones in Southern Africa. Land Degrad Develop 30(11):1288–1299. https://doi.org/10.1002/ldr.3302

    Article  Google Scholar 

  • Tarolli P, Sofia G, Wenfang CAO (2018) The geomorphology of the human age. In: Dellasala DA, Goldstein MI (eds) Encyclopedia of the anthropocene. Elsevier Inc, pp 35–43. https://doi.org/10.1016/B978-0-12-809665-9.10501-4

  • Thaer A (1809) Grundsätze der rationellen Landwirthschaft. Erster Band. Berlin 1809. Grundsätze der rationellen Landwirtschaft, 4 Bde. Realschulbuchhandlung, Berlin 1809–1812

    Google Scholar 

  • Thiele-Bruhn S, Schloter M, Wilke B-M, Beaudette LA, Martin-Laurent F, Cheviron N, Mougin C, Römbke J (2020) Identification of new microbial functional standards for soil quality assessment. SOIL 6:17–34. https://doi.org/10.5194/soil-6-17-2020

  • Thomsen EO, Reeve JR, Culumber CM, Alston DG, Newhall R, Cardon G (2019) Simple soil tests for on-site evaluation of soil health in orchards. Sustainability 11:6009. https://www.mdpi.com/2071-1050/11/21/6009

  • Thorp J (1942) The influence of environment on soil formation. Soil Sci Soc Am J 6(C):39–46

    Google Scholar 

  • Thoumazeau A, Bustany C, Rodrigues J, Bessou C (2019) Using the LANCA® model to account for soil quality within LCA: First application and approach comparison in two contrasted tropical case studies. Indonesian J Life Cycle Assess Sustain 3(1):13. https://ijolcas.ilcan.or.id/index.php/IJoLCAS/article/view/42

  • Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Internat 88:299–309

    Article  Google Scholar 

  • Tóth G, Hermann T, Szatmári G, Pásztor L (2016) Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ 565:1054–1062

    Article  Google Scholar 

  • Tóth G, Hermann T, da Silva MR, Montanarella L (2018) Monitoring soil for sustainable development and land degradation neutrality. Environ Monit Assess 190:57. https://doi.org/10.1007/s10661-017-6415-3

    Article  Google Scholar 

  • Trapp M, Deubert M, Streib L, Scholz-Starke B, Roß-Nickoll M, Toschki A (2020) Simulating the effects of agrochemicals and other risk-bearing management measures on the terrestrial agrobiodiversity: the RISKMIN approach. In: Mirschel W, Terleev V, Wenkel KO (eds) Landscape modelling and decision support. Innovations in landscape research. Springer, Cham, pp 443–459. https://doi.org/10.1007/978-3-030-37421-1_23

  • Trofimov IA, Trofimova LS, Yakovleva EP (2020) The work of VV Dokuchaev in the Chernozem zone of Russia: a contribution towards productive and sustainable agrolandscapes, and a basis for recent research. In: Mueller L, Sychev VG, Dronin NM, Eulenstein F (eds) Exploring and optimizing agricultural landscapes. Springer 2020, in print ISBN 978–3–030–67448–9

    Google Scholar 

  • Troldborg M, Aalders I, Towers W, Hallett PD, McKenzie BM, Bengough AG, Lilly A, Ball BC, Hough RL (2013) Application of Bayesian belief networks to quantify and map areas at risk to soil threats: using soil compaction as an example. Soil Tillage Res 132:56–68

    Article  Google Scholar 

  • Trovato MG, Ali D (2019) Planning tools for the protection of the natural and cultural heritage in the Eastern Mediterranean area. In: Mueller L, Eulenstein F (eds) Current trends in landscape research. Innovations in landscape research. Springer, Cham, pp 467–486. https://doi.org/10.1007/978-3-030-30069-2_20

  • Turbé A, De Toni A, Benito P, Lavelle P, Ruiz N, Van der Putten W, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats, and tools for policy makers. BioIntelligence Service, IRD, and NIOO, Report for European Commission (DG Environment), Brussels, Belgium, 250 pp

    Google Scholar 

  • UN (2015) Agenda 2030: sustainable development goals. 17 Goals to transform our world. https://www.un.org/sustainabledevelopment/. Accessed on 23 May 2020

  • UNCCD (1994) United Nations convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. Paris, France, 54 pp

    Google Scholar 

  • UNCCD (2012) United Nations convention to combat desertification. https://web.archive.org/web/20160607231107/, http://www.unccd.int/en/about-the-convention/Pages/Text-Part-I.aspx. Accessed on 23 May 2020

  • UNDP (2019) Combatting land degradation. Securing a sustainable future. https://www.undp.org/content/dam/undp/library/planet/environment/Combatting_Land_Degradation%E2%80%93Securing_A_Sustainable_Future.pdf. Accessed on 23 May 2020

  • UNEP (2020) United Nations environment programme. https://na.unep.net/siouxfalls/des/uncedp1.php. Accessed on 23 May 2020

  • USDA/NRCS (2020) Soil quality indicator sheets. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/health/assessment/. Accessed on 23 May 2020

  • Vågen T-G, Winowiecki LA, Tondoh JE, Desta LT, Gumbricht T (2016) Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263:216–225. https://doi.org/10.1016/j.geoderma.2015.06.023

  • Van Eetvelde V, Antrop M (2005) The significance of landscape relic zones in relation to soil conditions, settlement pattern and territories in Flanders. Landscape Urban Planning 70(1–2):127–141. https://doi.org/10.1016/j.landurbplan.2003.10.009

  • Van Leeuwen JP, Creamer RE, Cluzeau D, Debeljak M, Gatti F, Henriksen C, Kuzmanovski V, Menta C, Peres G, Picaud C, Saby N, TrajanovA T-G, Visioli G, Rutgers M (2019) Modeling of soil functions for assessing soil quality: soil biodiversity and habitat provisioning. Front Environ Sci 7:113. https://doi.org/10.3389/fenvs.2019.00113

    Article  Google Scholar 

  • Verón SR, Paruelo JM, Oesterheld M (2006) Assessing desertification. J Arid Environ 66:751–763.https://doi.org/10.1016/j.jaridenv.2006.01.021

  • Virto I, Imaz MJ, Fernández-Ugalde O, Gartzia-Bengoetxea N, Enrique A, Bescansa P (2015) Soil degradation and soil quality in Western Europe: current situation and future perspectives. Sustainability 7:313–365. https://doi.org/10.3390/su7010313

  • Vrebos D, Bampa F, Creamer RE, Gardi C, Ghaley BB, Jones A, Rutgers M, Sandén T, Staes J, Meire P (2017) The impact of policy instruments on soil multifunctionality in the European Union. Sustainability 9(3):407. https://doi.org/10.3390/su9030407

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98(4):725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

  • Wander MM, Cihacek LJ, Coyne M, Drijber RA, Grossman JM, Gutknecht JLM, Horwath WR, Jagadamma S, Olk DC, Ruark M, Snapp SS, Tiemann LK, Weil R, Turco RF (2019) Developments in agricultural soil quality and health: reflections by the research committee on soil organic matter management. Front Environ Sci. https://doi.org/10.3389/fenvs.2019.00109

  • Webb NP, Kachergis E, Miller SW, McCord SE, Bestelmeyer BT, Brown JR, Chappell A, Edwards BL, Herrick JKE, Karl JW, Leys JF, Metz LJ, Smarik S, Tatarko J, Van Zee JW, Zwicke G (2020) Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecol Indicators 110:10588. https://doi.org/10.1016/j.ecolind.2019.105881

  • Wessel-Bothe S, Weihermüller L (2020) Field measurement methods in soil science. Borntraeger Science Publishers, 210 pp

    Google Scholar 

  • Wienhold B, Karlen D, Andrews SS, Stott DE (2009) Protocol for indicator scoring in the soil management assessment framework (SMAF). Renew Agric Food Syst 24(4):260–266. https://doi.org/10.1017/S1742170509990093

    Article  Google Scholar 

  • Williams H, Colombi T, Keller T (2020) The influence of soil management on soil health: an on-farm study in southern Sweden. Geoderma 360:114010. https://doi.org/10.1016/j.geoderma.2019.114010

    Article  CAS  Google Scholar 

  • Xie H, Zhang Y, Wu Zh, Lv T (2020) A bibliometric analysis on land degradation: current status, development, and future direction. Land 9(1):28. https://doi.org/10.3390/land9010028

  • Xue R, Wang C, Liu M, Zhang D, Li K, Li N (2019) A new method for soil health assessment based on Analytic Hierarchy Process and meta-analysis. Sci Total Environ 650:2771–2777. https://doi.org/10.1016/j.scitotenv.2018.10.049

  • Yakovlev AS (2013) Permissible ecological state of soils and anthropogenic influence as the basis of their ecological standard and quality management. In: Shoba SA, Yakovlev AS, Rybalsky NG (eds) Standardization and regulation of environmental and soils quality and land management. NIA Priroda, Moscow, p 373. (Дoпycтимoe экoлoгичecкoe cocтoяниe пoчв и aнтpoпoгeннoe вoздeйcтвиe кaк ocнoвa иx экoлoгичecкoгo нopмиpoвaния и yпpaвлeния кaчecтвoм)

    Google Scholar 

  • Yigini Y, Panagos P (2016) Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci Total Environ 557–558:838–850

    Article  Google Scholar 

  • Yue Y, Li M, Wang L, Zhu A‐X (2019) A data‐mining‐based approach for aeolian desertification susceptibility assessment: a case‐study from Northern China. Land Degrad Develop 30(16):1968–1983. https://doi.org/10.1002/ldr.3393

  • Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W (2020) Quantifying nutrient budgets for sustainable nutrient management. Glob Biogeochem Cycles 34(3):e2018GB006060. https://doi.org/10.1029/2018GB006060

  • Zhu Ch, Fan X, Bai Zh (2020) Spatiotemporal pattern of wind erosion on unprotected topsoil replacement sites in mainland China. Sustainability 12(8):3237. https://doi.org/10.3390/su12083237

Download references

Acknowledgements

Preparation of this chapter was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract number 451-03-09/2021-14/200011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmira Saljnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saljnikov, E. et al. (2022). Understanding Soils: Their Functions, Use and Degradation. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_1

Download citation

Publish with us

Policies and ethics